Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T20:48:56.237Z Has data issue: false hasContentIssue false

Ion-Assisted Surface Processing of Electronic Materials

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Why are low-energy ions relevant to the surface processing of electronic materials? The answer lies in the overriding trend of miniaturization in microelectronics. The achievement of these feats in ultrasmall architecture has required surface processing capabilities that allow layer addition and removal with incredible precision. The resulting benefits of greater capacity and speed at a plummeting cost per function are near legendary.

The ability of low-energy ions to enhance the precision of surface etching, cleaning, and deposition/growth processes (Figure 1) provides one basis for the interest in ion-assisted processes. Low-energy ions are used, for example, to enhance the sharpness of side walls in plasma etching and to improve step coverage by metal layers in sputter deposition. Emerging optoelectronic applications such as forming ridges for wave-guides and ultrasmooth vertical surfaces for lasers further extend piesent requirements, and low-energy ions again provide one tool to help in this area of ultraprecise materials control. Trends associated with the decreased feature size include the movement from wet chemical processing to dry processing, the continuing need for reductions in defect densities, and the drive toward reduced temperatures and times in process steps.

How do the above trends focus interest on studies of low-energy ion-assisted processes? In current applications, these trends are driving the need for increased atomic-level understanding of the ion-enhancement mechanisms, for example, in reactive ion etching to minimize defect production and enhance surface chemical reactions.

Type
Ion-Assisted Processing of Electronic Materials
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Brice, D.K., Tsao, J.Y., and Picraux, S.T., Nucl. Instrum. Methods 44 (1989) p. 68.CrossRefGoogle Scholar
2.Winters, H.F. and Coburn, J.W., Surf. Sci. Reports, 1992 (in press).Google Scholar
3.Butterbaugh, J.W., Gray, D.C., and Sawin, H.H., J. Vac. Sci. Technol. B9 (1991) p. 1461.CrossRefGoogle Scholar
4.Plasma Etching: An Introduction, edited by Manos, D.M and Flamm, D.L. (Academic Press, Cambridge, MA, 1989).Google Scholar
5.Asakawa, K. and Sugata, S., Jpn. J. Appl. Phys. 22 (1983) p. L653; Vawter, G.A. and Wendt, J.R., Appl. Phys. Lett. 58 (1991) p. 289.CrossRefGoogle Scholar
6.Horiike, Y., Tanaka, T., Nakano, M., Iseda, S., Sakaue, H., Sindo, H., Mayazaki, S., and Hirose, M., J. Vac. Sci. Technol. A8 (1990) p. 1844.CrossRefGoogle Scholar
7.Bedrossian, P. and Klitsner, T., Phys. Rev. B44 (1991) p. 13783; Phys. Rev. Lett. 68 (1992) p. 646; and P. Bedrossian, J.E. Houston, E. Chason, J.Y. Tsao, and S.T. Picraux, Phys. Rev. Lett. 67 (1991) p. 124.CrossRefGoogle Scholar
8.Anthony, B., Breaux, L., Hsu, T., Banerjee, S., and Tasch, A.F., J. Vac. Sci. Technol. B7 (1989) p. 621; S.V. Hattangady, R.A. Rudder, M.J. Mantini, G.G. Fountain, J.B. Posthill, and R.J. Markunas, J. Appl. Phys. 67 (1990) p. 1223.CrossRefGoogle Scholar
9.Ni, W-X., Knall, J., Hasan, M.A., Hansson, G.V., Sundgren, J-E., Barnett, S.A., Markert, L.C., and Greene, J.E., Phys. Rev. B40 (1989) p. 10449; J.P. Noel, J.E. Greene, N.L. Rowell, S. Kechang, and D.C. Houghton, Appl. Phys. Lett. 55 (1989) p. 1525.CrossRefGoogle Scholar
10.Choi, C-H., Ai, R., and Barnett, S.A., Phys. Rev. Lett. 67 (1991) p. 2826.CrossRefGoogle Scholar
11.Tsai, C.J., Rozenak, P., Vreeland, T., and Atwater, H.A., J. Cryst. Growth 111 (1991) p. 931; H.A. Atwater, C.J. Tsai, S. Nikzad, and M.V.R. Murty, in Interface Dynamics and Growth, edited by K.S. Liang, M.P. Anderson, R.F. Bruinsma, and G. Scoles (Mater. Res. Soc. Symp. Proc. 237, Pittsburgh, PA, 1992).Google Scholar
12.Chason, E., Bedrossian, P., Horn, K.M., Tsao, J.Y., and Picraux, S.T., Appl. Phys. Lett. 57 (1990) p. 1793.Google Scholar
13.Anthony, B., Hsu, T., Breaux, L., Qian, R., Banerjee, S., and Tasch, A., J. Electronic Mater. 19 (1990) p. 1089.CrossRefGoogle Scholar
14.Appleton, B.R., Pennycook, S.J., Zuhr, R.A., Herbots, N., and Noggle, T.S., Nucl. Instrum. Methods B19/20 (1987) p. 975; T. Tokuyama, K. Yagi, K. Miyake, M. Tamura, N. Natsuki, and S. Tachi, Nucl. Instrum Methods 182/183 (1981) p. 241.CrossRefGoogle Scholar
15.Zuhr, R.A., Haynes, T.E., Galloway, M.D., Tanaka, S., Yamada, Y., and Yamada, I., Nucl. Instrum. Methods B59/60 (1991) p. 308.CrossRefGoogle Scholar
16.Yamada, I., Nucl. Instrum. Methods B37/38 (1988) p. 770; R.L. MacEachern, W.L. Brown, M.F. Jarrold, M. Sosnowski, G. Takaoka, H. Usui, and I. Yamada, J. Vac. Sci. Technol. A9 (1991) p. 3105.Google Scholar
17.Richard, R.D., Markunas, R.J., Lucovsky, G., Fountain, G.G., Mansour, A.N., and Tsu, D.V., J. Vac. Sci. Technol. A3 (1985) p. 867; J.C. Barbour, H.J. Stein, and C.A. Outten, in Low Energy Ion Beam and Plasma Modification of Materials, edited by J.M.E. Harper, K. Miyake, J.R. McNeil, and S.M. Gorbatkin (Mater. Res. Soc. Symp. Proc. 223, Pittsburgh, PA, 1991) p. 91.CrossRefGoogle Scholar