Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T08:31:04.419Z Has data issue: false hasContentIssue false

In Situ Heating Transmission Electron Microscopy

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Temperature is one of the most important factors affecting the state and behavior of materials. In situ heating transmission electron microscopy (TEM) is a powerful tool for understanding such temperature effects, and recently in situ heating TEM has made significant progress in terms of temperature available and resolution attained. This article briefly describes newly developed specimen-heating holders, which are useful in carrying out in situ heating TEM experiments. It then focuses on three main applications of these specimen holders: solid–solid reactions, solid–liquid reactions (including highresolution observation of a solid–liquid interface, size dependence of the melting temperatures of one-, two- and three-dimensionally reduced systems, size dependence of the contact angle of fine metal liquid, and wetting of Si with liquid Au or Al) and solid–gas reactions. These results illustrate the benefit of in situ heating TEM for providing fundamental information on temperature effects on materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kamino, T., Saka, H., Microsc. Microanal. Microstruct. 4, 127 (1993).CrossRefGoogle Scholar
2.Kamino, T., Yaguchi, T., Saka, H., J. Electron. Microsc. 43, 104 (1994).Google Scholar
3.Kamino, T., Yaguchi, T., Ukiana, M., Yasutomi, Y., Saka, H., Mater. Trans. JIM 36, 73 (1995).CrossRefGoogle Scholar
4.Saka, H., Sakai, A., Kamino, T., Imura, T., Philos. Mag. A 52, 67 (1985).Google Scholar
5.Sasaki, K., Saka, H., Mater. Res. Soc. Symp. Proc. 466, 185 (1997).CrossRefGoogle Scholar
6.Saka, H., Sasaki, K., Tsukimoto, S., Arai, S., J. Mater. Res. 20, 1629 (2005).CrossRefGoogle Scholar
7.Gouchman, P.R., Jesser, W.A., Nature 269, 481 (1977).CrossRefGoogle Scholar
8.Senda, Y., Sasaki, K., Saka, H., Philos. Mag. 84, 2635 (2004).CrossRefGoogle Scholar
9.Chang, J., Sakai, T., Saka, H., Philos. Mag. Lett. 85, 247 (2005).CrossRefGoogle Scholar
10.Murai, J., Marukawa, T., Mima, T., Arai, S., Sasaki, K., Saka, H., J. Mater. Sci. 41, 2723 (2006).CrossRefGoogle Scholar
11.Kamino, T., Yaguchi, T., Tomita, M., Saka, H., Philos. Mag. A 75, 105 (1997).CrossRefGoogle Scholar
12.Tsukimoto, S., Arai, S., Saka, H., Philos. Mag. Lett. 79, 913 (1999).CrossRefGoogle Scholar
13.Tsukimoto, S., Arai, S., Konno, M., Kamino, T., Sasaki, K., Saka, H., J. Microsc. 203, 17 (2001).CrossRefGoogle Scholar
14.Kamino, T., Yaguchi, T., Konno, M., Watabe, A., Marukawa, T., Mima, T., Kuroda, K., Saka, H., Arai, S., Makino, H., Suzuki, Y., Kishita, K., J. Electron. Microsc. 54, 497 (2005).CrossRefGoogle Scholar
15.Kamino, T., Yaguchi, T., Konno, M., Watabe, A., Nagakubo, Y., J. Electron. Microsc. 55, 245 (2006).Google Scholar
16.Arai, S., Tsukimoto, S., Miyai, H., Saka, H., J. Electron. Microsc. 48, 317 (1999).CrossRefGoogle Scholar
17.Howe, J.M., Saka, H., MRS Bull. 29, 951 (2004).CrossRefGoogle Scholar