Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T22:42:58.686Z Has data issue: false hasContentIssue false

Gold-Based Magneto/Optical Nanostructures: Challenges for In Vivo Applications in Cancer Diagnostics and Therapy

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Nanoparticles with a gold shell and iron core have unique optical and magnetic properties that can be utilized for simultaneous detection and treatment strategies. Several nanoparticles have been synthesized and show an ability to mediate a variety of potential applications in biomedicine, including cancer molecular optical and magnetic resonance imaging, controlled drug delivery, and photothermal ablation therapy. However, to be effective, these nanoparticles must be delivered efficiently into their targets. In this review, we will provide an updated summary of the gold-shelled magnetic nanoparticles that have been synthesized, methods for characterization, and their potential for cancer diagnosis and treatment. We will also discuss the biological barriers that need to be overcome for the effective delivery of these nanoparticles. The desired nanoparticle characteristics needed to evade these biological barriers, such as size, shape, surface charge, and surface coating are also explained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Jain, P.K., Huang, X., El-Sayed, I.H., El-Sayed, M.A., Acc. Chem. Res. (May 1, 2008).Google Scholar
2Daniel, M.C., Astruc, D., Chem. Rev. 104 (1), 293 (2004).Google Scholar
3Melancon, M.P., Lu, W., Yang, Z., Zhang, R., Cheng, Z., Elliot, A.M., Stafford, J., Olson, T., Zhang, J.Z., Li, C., Mol. Cancer Ther. 7 (6), 1730 (2008).Google Scholar
4Lu, A.H., Salabas, E.L., Schuth, F., Angew. Chem. Int. Ed. Engl. 46 (8), 1222 (2007).Google Scholar
5Tartaj, P., Morales, M.D.P., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T., Serna, C.J., J. Phys. D: Appl. Phys. 36 (13), R182 (2003).Google Scholar
6Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., Muller, R.N., Chem. Rev. 108 (6), 2064 (2008).Google Scholar
7Mahmood, U., Weissleder, R., Mol. Cancer Ther. 2 (5), 489 (2003).Google Scholar
8Kim, J., Park, S., Ji, E.L., Jin, S.M., Lee, J.H., Lee, I.S., Yang, I., Kim, J.-S., Kim, S.K., Cho, M.-H., Hyeon, T., Angew. Chem. Int. Ed. 45 (46), 7754 (2006).Google Scholar
9Stöber, W., Fink, A., Bohn, E., J. Colloid Interface Sci. 26 (1), 62 (1968).Google Scholar
10Stoeva, S.I., Huo, F., Lee, J.S., Mirkin, C.A., J. Am. Chem. Soc. 127 (44), 15362 (2005).Google Scholar
11Salgueirino-Maceira, V., Correa-Duarte, M.A., Farle, M., Lopez-Quintela, A., Sieradzki, K., Diaz, R., Chem. Mater. 18 (11), 2701 (2006).Google Scholar
12Chen, M., Kim, Y.N., Lee, H.M., Li, C., Cho, S.O., J. Phys. Chem. C 112 (24), 8870 (2008).Google Scholar
13Wang, H., Brandl, D.W., Le, F., Nordlander, P., Halas, N.J., Nano Lett. 6 (4), 827 (2006).Google Scholar
14Wang, L., Bai, J., Li, Y., Huang, Y., Angew. Chem. Int. Ed. Engl. 47 (13), 2439 (2008).Google Scholar
15Lim, I.S., Njoki, P.N., Park, H.-Y., Wang, X., Wang, L., Mott, D., Zhong, C.-J., Nanotechnology 19, 1 (2008).Google Scholar
16Thorek, D.L., Tsourkas, A., Biomaterials 29 (26), 3583 (2008).Google Scholar
17Ji, X., Shao, R., Elliott, A.M., Stafford, R.J., Esparza-Coss, E., Bankson, J.A., Liang, G., Luo, Z.P., Park, K., Markert, J.T., Li, C., J. Phys. Chem. C 111 (17), 6245 (2007).Google Scholar
18Mie, G., Ann. Phys. 25, 377 (1908).Google Scholar
19Averitt, R.D., Sarkar, D., Halas, N.J., Phys. Rev. Lett. 78 (22), 4217 (1997).Google Scholar
20Charamisinau, I., Happawana, G., Evans, G., Rosen, A., Hsi, R.A., Bour, D., Appl. Opt. 44 (24), 5055 (2004).Google Scholar
21Ji, X., Shao, R., Elliott, A.M., Stafford, R.J., Esparza-Coss, E., Bankson, J.A., Liang, G., Luo, Z.P., Park, K., Markert, J.T., Li, C., J. Phys. Chem. C 111 (17), 6245 (2007).Google Scholar
22Park, K., Liang, G., Ji, X., Luo, Z.P., Li, C., Croft, M.C., Markert, J.T., J. Phys. Chem. C 111 (50), 18512 (2007).Google Scholar
23Schwartzberg, A.M., Grant, C.D., van Buuren, T., Zhang, J.Z., J. Phys. Chem. C 111 (25), 8892 (2007).Google Scholar
24Lim, Y.T., Cho, M.Y., Kim, J.K., Hwangbo, S., Chung, B.H., Chembiochem 8 (18), 2204 (2007).Google Scholar
25Hamm, B., Staks, T., Taupitz, M., Maibauer, R., Speidel, A., Huppertz, A., Frenzel, T., Lawaczeck, R., Wolf, K.J., Lange, L., J. Magn. Reson. Imaging 4 (5), 659 (1994).Google Scholar
26Li, S.D., Huang, L., Mol. Pharm. 5 (4), 496 (2008).Google Scholar
27Maeda, H., Wu, J., Sawa, T., Matsumura, Y., Hori, K., J. Control. Release 65 (1–2), 271 (2000).Google Scholar
28Li, C., Adv. Drug Deliv. Rev. 54 (5), 695 (2002).Google Scholar
29Melancon, M.P., Elliott, A., Shetty, A., Taylor, B., Ji, X.-J., Huang, Q., Gelovani, J., Stafford, J., Li, C., 2008 World Molecular Imaging Congress. Sept. 1013, 2008, Nice, France, 2008.Google Scholar
30De Jong, W.H., Hagens, W.I., Krystek, P., Burger, M.C., Sips, A.J., Geertsma, R.E., Biomaterials 29 (12), 1912 (2008).Google Scholar
31Choi, H.S., Liu, W., Misra, P., Tanaka, E., Zimmer, J.P., Itty Ipe, B., Bawendi, M.G., Frangioni, J.V., Nat. Biotechnol. 25 (10), 1165 (2007).Google Scholar
32Decuzzi, P., Ferrari, M., Biomaterials 27 (30), 5307 (2006).Google Scholar
33Fujita, T., Nishikawa, M., Ohtsubo, Y., Ohno, J., Takakura, Y., Sezaki, H., Hashida, M., J. Drug Target. 2 (2), 157 (1994).Google Scholar
34Papisov, M.I., Bogdanov, A. Jr., Schaffer, B., Nossiff, N., Shen, T., Weissleder, R., Brady, T.J., J. Magn. Magn. Mater. 122 (1–3), 383 (1993).Google Scholar
35Choully, C., Pouliquen, I., Lucet, J.J., Jeune, P., Jallet, P., J. Microencapsul. 13, 245 (1996).Google Scholar
36Sun, C., Lee, J.S.H., Zhang, M., Adv. Drug Deliv. Rev. 60 (11), 1252 (2008).Google Scholar
37Hobbs, S.K., Monsky, W.L., Yuan, F., Roberts, W.G., Griffith, L., Torchilin, V. P., Jain, R.K., Proc. Nat. Acad. Sci. U.S.A. 95 (8), 4607 (1998).Google Scholar
38Kong, G., Braun, R.D., Dewhirst, M.W., Cancer Res. 60 (16), 4440 (2000).Google Scholar
39Zhang, F., Skoda, M.W., Jacobs, R.M., Zorn, S., Martin, R.A., Martin, C.M., Clark, G.F., Goerigk, G., Schreiber, F., J. Phys. Chem. A 111 (49), 12229 (2007).Google Scholar
40Otsuka, H., Nagasaki, Y., Kataoka, K., Adv. Drug Deliv. Rev. 55 (3), 403 (2003).Google Scholar
41Niidome, T., Yamagata, M., Okamoto, Y., Akiyama, Y., Takahashi, H., Kawano, T., Katayama, Y., Niidome, Y., J. Control. Release 114 (3), 343 (2006).Google Scholar
42Paciotti, G.F., Myer, L., Weinreich, D., Goia, D., Pavel, N., McLaughlin, R.E., Tamarkin, L., Drug Deliv. 11 (3), 169 (2004).Google Scholar
43Hainfeld, J.F., Slatkin, D.N., Focella, T.M., Smilowitz, H.M., Br. J. Radiol. 79 (939), 248 (2006).Google Scholar
44Kim, D., Park, S., Lee, J.H., Jeong, Y.Y., Jon, S., J. Am. Chem. Soc. 129 (24), 7661 (2007).Google Scholar
45Qian, X., Peng, X.H., Ansari, D.O., Yin-Goen, Q., Chen, G.Z., Shin, D.M., Yang, L., Young, A.N., Wang, M.D., Nie, S., Nat. Biotechnol. 26 (1), 83 (2008).Google Scholar
46Zhang, G., Yang, Z., Lu, W., Zhang, R., Huang, Q., Tian, M., Li, L., Liang, D., Li, C., Biomaterials 2009.Google Scholar
47Lowery, A.R., Gobin, A.M., Day, E.S., Shah, K.Y., Halas, N.J., West, J.L., Clin Cancer Res. 11 (24), 9097s (2005).Google Scholar
48Chen, J.Y., Wang, D.L., Xi, J.F., Au, L., Siekkinen, A., Warsen, A., Li, Z.Y., Zhang, H., Xia, Y.N., Li, X.D., Nano Lett. 7 (5), 1318 (2007).Google Scholar
49Lu, W., Xiong, C., Zhang, G., Huang, Q., Zhang, R., Zhang, J.Z., Li, C., Clin. Cancer Res. 15 (3), 876 (2009).Google Scholar
50Schwartzberg, A.M., Oshiro, T.Y., Zhang, J.Z., Huser, T., Talley, C.E., Anal. Chem. 78, 4732 (2006).CrossRefGoogle Scholar
51Guillon, C., Langot, P., Del Fatti, N., Vallee, F., Kirakosyan, A.S., Shahbazyan, T.V., Cardinal, T., Treguer, M., Nano Lett. 7 (1), 138 (2007).Google Scholar
52Wang, Y.W., Xie, X.Y., Wang, X.D., Ku, G., Gill, K.L., O'Neal, D.P., Stoica, G., Wang, L.V., Nano Lett. 4 (9), 1689 (2004).Google Scholar
53Babes, L., Denizot, B., Tanguy, G., Le Jeune, J.J., Jallet, P., J. Colloid Interface Sci. 212, (2), 474482 (1999).Google Scholar
54Hilger, I., Fruhauf, K., Andra, W., Hiergeist, R., Hergt, R., Kaiser, W.A., Acad. Radiol. 9 (2), 198 (2002).Google Scholar
55Hilger, I., Andra, W., Hergt, R., Hiergeist, R., Schubert, H., Kaiser, W.A., Radiology 218 (2), 570 (2001).Google Scholar
56Milani, V., Endres, M., Kuppner, M.C., Issels, R.D., Noessner, E., Dtsch. Med. Wochenschr. 129 (1–2), 31 (2004).Google Scholar
57Overgaard, J., Int. J. Radiat. Oncol. Biol. Phys. 16 (3), 535 (1989).Google Scholar
58Overgaard, J., Gonzalez Gonzalez, D., Hulshof, M.C., Arcangeli, G., Dahl, O., Mella, O., Bentzen, S.M., Lancet 345 (8949), 540 (1995).Google Scholar
59Engelhardt, R., Recent Results Cancer Res. 104, 136 (1987).Google Scholar
60Dewey, W.C., Int. J. Hyperthermia 10 (4), 457 (1994).Google Scholar
61Gilchrist, R.K., Medal, R., Shorey, W.D., Hanselman, R.C., Parrott, J.C., Taylor, C.B., Ann. Surg. 146 (4), 596 (1957).Google Scholar
62Gilchrist, R.K., Shorey, W.D., Hanselman, R.C., Depeyster, F.A., Yang, J., Medal, R., Ann. Surg. 161, 890 (1965).Google Scholar
63Medal, R., Gilchrist, R.K., Barker, W., Hanselman, R., Arch. Surg. 79, 427 (1959).Google Scholar
64Gordon, R.T., Hines, J.R., Gordon, D., Med. Hypotheses 5 (1), 83 (1979).Google Scholar