Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T07:42:02.243Z Has data issue: false hasContentIssue false

Epitaxial Growth of III-V Nanowires on Group IV Substrates

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Semiconducting nanowires are emerging as a route to combine heavily mismatched materials. The high level of control on wire dimensions and chemical composition makes them promising materials to be integrated in future silicon technologies as well as to be the active element in optoelectronic devices.

This ar ticle reviews the recent progress in epitaxial growth of nanowires on non-corresponding substrates. We highlight the advantage of using small dimensions to facilitate accommodation of the lattice strain at the surface of the structures. More specifically, we will focus on the growth of III-V nanowires on Group IV substrates. This approach enables the integration of high-perform ance III-V semiconductors monolithically into mature silicon technology, since fundamental issues of III-V integration on Si such as lattice and thermal expansion mismatch can be overcome. Moreover, as there will only be one nucleation site per crystallite, the system will not suffer from antiphase boundaries.

Issues that affect the electronic properties of the heterojunction, such as the crystallographic quality and diffusion of elements across the heterointerface, will be discussed. Finally, we address potential applications of vertical III-V nanowires grown on silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wagner, R.S. and Ellis, W.C., Appl. Phys. Lett. 4 (1964) p. 89.Google Scholar
2.Hiruma, K., Murakoshi, H., Yazawa, M., and Katsuyama, T., J. Cryst. Growth 163 (1996) p. 226.Google Scholar
3.Björk, M.T., Ohlsson, B.J., Sass, T., Persson, A.I., Thelander, C., Magnusson, M.H., Deppert, K., Wallenberg, L.R., and Samuelson, L., Appl. Phys. Lett. 80 (2002) p. 1058.Google Scholar
4.Wu, Y., Fan, R., and Yang, P., Nano Lett. 2 (2002) p. 83.CrossRefGoogle Scholar
5.Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C., and Lieber, C.M., Nature 415 (2002) p. 617.CrossRefGoogle Scholar
6.Verheijen, M.A., Immink, G., deSmet, T., Borgström, M.T., and Bakkers, E.P.A.M., J. Am. Chem. Soc. 128 (2006) p. 1353.Google Scholar
7.Lauhon, L.J., Gudiksen, M.S., Wang, D., and Lieber, C.M., Nature 420 (2002) p. 57.Google Scholar
8.Goldberger, J., He, R., Zhang, Y., Lee, S., Yan, H., Choi, H.-J., and Yang, P., Nature 422 (2003) p. 599.CrossRefGoogle Scholar
9.Hu, J., Bando, Y., Liu, Z., Sekiguchi, T., Goldberg, D., and Zhan, J., J. Am. Chem. Soc. 125 (2003) p. 11306.Google Scholar
10.Hayden, O., Greytak, A.B., and Bell, D.C., Adv. Mater. 17 (2005) p. 701.Google Scholar
11.Qian, F., Gradecak, S., Li, Y., Wen, C.-Y., and Lieber, C.M., Nano Lett. 5 (2005) p. 2287.Google Scholar
12.Ertekin, E., Greaney, P.A., Sands, T.D., and Chrzan, D.C., in Mater. Res. Soc. Symp. Proc. 737 (2003) F10.4.1–6.Google Scholar
13.Zervos, M. and Feiner, L.F., J. Appl. Phys. 95 (2004) p. 281.Google Scholar
14.Wagner, R.S., in Whisker Technology, edited by Levitt, A.B. (Wiley Interscience, New York, 1970) p. 47.Google Scholar
15.Givargizov, E.I., J. Cryst. Growth 20 (1973) p. 217.Google Scholar
16.Givargizov, E.I., J. Cryst. Growth 31 (1975) p. 20.CrossRefGoogle Scholar
17.Givargizov, E.I., J. Vac. Sci. Technol. B 11 (1993) p. 449.CrossRefGoogle Scholar
18.Yazawa, M., Koguchi, M., and Hiruma, K., Appl. Phys. Lett. 58 (1991) p. 1080.Google Scholar
19.Hiruma, K., Yazawa, M., Katsuyama, T., Ogawa, K., Haraguchi, K., Koguchi, M., and Kakibayashi, H., J. Appl. Phys. 77 (1995) p. 447.CrossRefGoogle Scholar
20.Kamins, T.I., Li, X., Williams, R.S., and Liu, X., Nano Lett. 4 (2004) p. 503.Google Scholar
21.Dailey, J.W., Taraci, J., Clement, T., Smith, D.J., Drucker, J., and Picraux, S.T., J. Appl. Phys. 96 (2004) p. 7556.Google Scholar
22.Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P., Science 292 (2001) p. 1897.Google Scholar
23.Zhong, Z., Qian, F., Wang, D., and Lieber, C.M., Nano Lett. 3 (2003) p. 343.Google Scholar
24.Kuykendall, T., Pauzauski, P.J., Zhang, Y., Goldberger, J., Sirbuly, D., Denlinger, J., and Yang, P., Nature Mater. 3 (2004) p. 524.Google Scholar
25.Chan, Y.F., Duan, X.F., Chan, S.K., Sou, I.K., Zhang, X.X., and Wang, N., Appl. Phys. Lett. 83 (2003) p. 2665.Google Scholar
26.Mårtensson, T., Svensson, C.P.T., Wacaser, B.A., Larsson, M.W., Seifert, W., Deppert, K., Gustafsson, A., Wallenberg, L.R., and Samuelson, L., Nano Lett. 4 (2004) p. 1987.Google Scholar
27.Roest, A.L., Verheijen, M.A., Wunnicke, O., Serafin, S., Wondergem, H., and Bakkers, E.P.A.M., Nanotechnology 17 (2006) p. S271.Google Scholar
28.Verheijen, M.A., Bakkers, E.P.A.M., Balkenende, A.R., Roest, A.L., Wagemans, M.M.H., Kaiser, M., Wondergem, H.J., and Graat, P.C.J., in Proc. MSM XIV: Microscopy of Semiconducting Materials, Springer Proc. Physics, Vol. 107, edited by A.G. Cullis and J.L. Hutchison (2005) p. 295.Google Scholar
29.Bakkers, E.P.A.M., Van Dam, J.A., De Franceschi, S., Kouwenhoven, L.P., Kaiser, M., Verheijen, M., Wondergem, H., and Van der Sluis, P., Nature Mater. 3 (2004) p. 769.Google Scholar
30.Bootsma, G.A. and Gassen, H., J. Cryst. Growth 10 (1971) p. 223.Google Scholar
31.Schubert, L., Werner, P., Zakharov, N.D., Gerth, G., Kolb, F.M., Long, L., Gösele, U., and Tan, T.Y., Appl. Phys. Lett. 84 (2004) p. 4968.Google Scholar
32.Calarco, R., Marso, M., Richter, T., Aykanat, A.I., Meijers, R., Hart, A.V.D., Stoica, T., and Lüth, H., Nano Lett. 5 (2005) p. 981.CrossRefGoogle Scholar
33.Ohno, Y., Shirahama, T., Takeda, S., Ishizumi, A., and Kanemitsu, Y., Appl. Phys. Lett. 87 (2005) p. 43105.Google Scholar
34.Plante, M.C. and LaPierre, R.R., J. Cryst. Growth 286 (2006) p. 394.CrossRefGoogle Scholar
35.Bjork, M.T., Ohlsson, B.J., Sass, T., Persson, A.I., Thelander, C., Magnusson, M.H., Deppert, K., Wallenberg, L.R., and Samuelson, L., Appl. Phys. Lett. 80 (2002) p. 1058.Google Scholar
36.Morales, A.M. and Lieber, C.M., Science 279 (1998) p. 208.Google Scholar
37.Zhang, Y.F., Tang, Y.H., Wang, N., Yu, D.P., Lee, C.S., Bello, I., and Lee, S.T., Appl. Phys. Lett. 72 (1998) p. 1835.CrossRefGoogle Scholar
38.Duan, X. and Lieber, C.M., Adv. Mater. 12 (2000) p. 298.Google Scholar
39.Bakkers, E.P.A.M. and Verheijen, M.A., J. Am. Chem. Soc. 125 (2003) p. 3440.Google Scholar
40.Ma, D.D.D., Lee, C.S., Au, F.C.K., Tong, S.Y., and Lee, S.T., Science 299 (2003) p. 1874.Google Scholar
41.Kamins, T.I., Williams, R.S., Basile, D.P., Hesjedal, T., and Harris, J.S., J. Appl. Phys. 89 (2001) p. 1008.Google Scholar
42.Hiraki, A., Lugujjo, E., and Mayer, J.W., J. Appl. Phys. 43 (1972) p. 3643.Google Scholar
43.Cassell, A.M., Franklin, N.R., Tombler, T.W., Chan, E.M., Han, J., and Dai, H., J. Am. Chem. Soc. 121 (1999) p. 7975.CrossRefGoogle Scholar
44.Huang, S., Cai, X., and Liu, J., J. Am. Chem. Soc. 125 (2003) p. 5636.Google Scholar
45.Gangloff, L., Minoux, E., Teo, K.B.K., Vincent, P., Semet, V., Binh, V.T., Yang, M.H., Bu, I.Y.Y., Lacerda, R.G., Pirio, G., Schnell, J.P., Pribat, D., Hasko, D.G., Amaratunga, G.A.J., Milne, W.I., and Legagneux, P., Nano Lett. 4 (2004) p. 1575.CrossRefGoogle Scholar
46.Krishnamachari, U., Borgström, M.T., Ohlsson, B.J., Panev, N., Samuelson, L., Seifert, W., Larsson, M.W., and Wallenberg, L.R., Appl. Phys. Lett. 85 (2004) p. 2077.CrossRefGoogle Scholar
47.Ikonic, Z., Srivastava, G.P., and Inkson, J.C., Phys. Rev. B. 52 (1995) p. 14078.Google Scholar
48.Westbrook, J.H., ed., Moffatt's Handbook of Binary Phase Diagrams (Genium Group, New York, 2004).Google Scholar
49.Lide, D.R., ed., Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla., 1995).Google Scholar
50.Scott, W. and Hager, R.J., J. Electron. Mater. 8 (1979) p. 581.Google Scholar
51.Fang, S.F., Adomi, K., Iyer, S., Morkoc, H., Zabel, H., Choi, C., and Otsuka, N., J. Appl. Phys. 68 (1990) p. R31.Google Scholar
52.Hayden, O., Agarwal, R., and Lieber, C.M., Nature Mater. 5 (2006) p. 352.Google Scholar
53.Cui, Y., Wei, Q., Park, H., and Lieber, C.M., Science 293 (2001) p. 1289.Google Scholar
54.Service, R.F., Science 306 (2004) p. 806.Google Scholar
55.Law, M., Greene, L.E., Johnson, J.C., Saykally, R., and Yang, P., Nature Mater. 4 (2005) p. 455.Google Scholar
56.Duan, X., Huang, Y., Cui, Y., Wang, J., and Lieber, C.M., Nature 409 (2001) p. 66.Google Scholar
57.van Weert, M.H.M., Wunnicke, O., Roest, A.L., Eijkemans, T.J., Silov, A. Yu, Haverkort, J.E.M., 't Hooft, G.W., and Bakkers, E.P.A.M., Appl. Phys. Lett. 88 043109 (2006).Google Scholar
58.Wong, H.S.P., IBM J. Res. Dev. 46 (2002) p. 133.Google Scholar
59.Doh, Y.-J., van Dam, J.A., Roest, A.L., Bakkers, E.P.A.M., Kouwenhoven, L.P., and De Franceschi, S., Science 309 (2005) p. 272.Google Scholar
60.van Dam, J.A., Nazarov, Y.V., Bakkers, E.P.A.M., De Franceschi, S., and Kouwenhoven, L.P., Nature 442 (2006) p. 667.CrossRefGoogle Scholar
61.Bryllert, T., Wernersson, L.-E., Fröberg, L.E., and Samuelson, L., IEEE Electron Dev. Lett. 27 (2006) p. 323.CrossRefGoogle Scholar
62.van Vugt, L.K., Veen, S.J., Bakkers, E.P.A.M., Roest, A.L., and Vanmaekelbergh, D., J. Am. Chem. Soc. 127 (2005) p. 12357.Google Scholar
63.Ng, H.T., Han, J., Yamada, T., Nguyen, P., Chen, Y.P., and Meyyappan, M., Nano Lett. 4 (2004) p. 1247.CrossRefGoogle Scholar
64.Goldberger, J., Hochbaum, A.I., Fan, R., and Yang, P., Nano Lett. 5 (2006) p. 973.CrossRefGoogle Scholar
65.Schmidt, V., Riel, H., Senz, S., Karg, S., Riess, W., and Gösele, U., Small 2 (2006) p. 85.Google Scholar
66.Seifert, W., Borgström, M., Deppert, K., Dick, K.A., Johansson, J., Larsson, M.W., Mårtensson, T., Sköld, N., Svensson, C.P.T., Wacaser, B.A., Wallenberg, L.R., and Samuelson, L., J. Cryst. Growth 272 (2004) p. 211.Google Scholar