Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T21:17:23.906Z Has data issue: false hasContentIssue false

Dense Metal Membranes for the Production of High-Purity Hydrogen

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Dense metal membranes are a well-developed technology for the production of high-purity hydrogen. The physical mechanism of hydrogen transport across metal films—dissociation of molecular hydrogen, diffusion of interstitial atomic hydrogen, and subsequent recombinative desorption of molecular hydrogen—means that metal membranes can have extremely high selectivities for hydrogen transport relative to other gases. We describe current experimental and theoretical trends in the development of metal alloy membranes for hydrogen purification in practical, chemically robust processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Paglieri, S.N. and Way, J.D. Sep. Purif. Methods 31 (2002) p.1.CrossRefGoogle Scholar
2 Morreale, B.D. Ciocco, M.V. Enick, R.M. Morsi, B.I. Howard, B.H. Cugini, A.V. and Rothenberger, K.S. J. Membr. Sci. 212 (2003) p.87.CrossRefGoogle Scholar
3 Roa, F. and Way, J.D. Ind. Eng. Chem. Res. 42 (2003) p.5827.CrossRefGoogle Scholar
4 Tong, J. Matsumura, Y. Suda, H. and Haraya, K. Ind. Eng. Chem. Res. 44 (2005) p.1454.CrossRefGoogle Scholar
5 Uemiya, S. Sato, N. Ando, H. Matsuda, T. and Kikuchi, E. Appl. Catal. 67 (1991) p.223.CrossRefGoogle Scholar
6 Shirai, M. and Arai, M. Langmuir 15 (1999) p.1577.CrossRefGoogle Scholar
7 Niwa, S. Eswaramoorthy, M. Nair, J. Raj, A. Itoh, N. Shoji, H. Namba, T. and Mizukami, F. Science 295 (2002) p.105.CrossRefGoogle Scholar
8 Lin, Y.M. Lee, G.L. and Rei, M.H. Catal. Today 44 (1998) p.343.CrossRefGoogle Scholar
9 Armor, J.N. J. Membr. Sci. 147 (1998) p. 217.CrossRefGoogle Scholar
10 Wicke, E. and Nernst, G.H. Ber. Bunsen-Ges. Phys. Chem. 68 (1964) p.224.CrossRefGoogle Scholar
11 Frieske, H. and Wicke, E. Ber. Bunsen-Ges. Phys. Chem. 77 (1973) p.48.CrossRefGoogle Scholar
12 Kulprathipanja, A. Alptekin, G.O. Falconer, J.L. and Way, J.D. Ind. Eng. Chem. Res. 43 (2004) p.4188.CrossRefGoogle Scholar
13 Kamakoti, P. Morreale, B.D. Ciocco, M.V. Howard, B.H. Killmeyer, R.P. Cugini, A.V. and Sholl, D.S. Science 307 (2005) p.569.CrossRefGoogle Scholar
14 Ward, T.L. and Dao, T. J. Membr. Sci. 153 (1999) p.211.CrossRefGoogle Scholar
15 Paglieri, S.N. Foo, K.Y. Way, J.D. Collins, J.P. and Harper-Nixon, D.L., Ind. Eng. Chem. Res. 38 (1999) p.1925.CrossRefGoogle Scholar
16 Roa, F. Block, M.J. and Way, J.D. Desalination 147 (2002) p.411.CrossRefGoogle Scholar
17 Roa, F. Way, J.D. McCormick, R.L. and Paglieri, S. Chem. Eng. J. 93 (2003) p.11.CrossRefGoogle Scholar
18 Roa, F. and Way, J.D. Appl. Surf. Sci. 240 (2005) p.85.CrossRefGoogle Scholar
19 She, Y. Han, J. and Ma, Y.H. Catal. Today 67 (2001) p.45.CrossRefGoogle Scholar
20 Mardilovich, I.P. Engwall, E. and Ma, Y.H. Desalination 144 (2002) p.85.CrossRefGoogle Scholar
21 Ma, Y.H. Mardilovich, I.P. and Engwall, E.E. Ann. N.Y. Acad. Sci. 984 (2003) p.346.CrossRefGoogle Scholar
22 Ma, Y.H. Akis, B.C. Ayturk, M.E. Guazzone, F. Engwall, E.E. and Mardilovich, I.P. Ind. Eng. Chem. Res. 43 (2004) p.2936.CrossRefGoogle Scholar
23 Rothenberger, K.S. Cugini, A.V. Howard, B.H. Killmeyer, R.P. Morreale, B.D. Enick, R.M. Bustamente, F. Mardilovich, I.P. and Ma, Y.H. J.Membr. Sci. 244 (2004) p.55.CrossRefGoogle Scholar
24 Gryaznov, V.M. Maganyuk, A.P. Gizhevskii, S.F. and Mardilovich, I.P. Dokl. Phys. Chem. 362 (1998) p.350.Google Scholar
25 McCool, B.A. and Lin, Y.S. J. Mater. Sci. 36 (2001) p.3221.CrossRefGoogle Scholar
26 Tong, J., Kashima, Y. Shirai, R. Suda, H. and Matsumura, Y. Ind. Eng. Chem. Res. 44 (2005) p.8025.CrossRefGoogle Scholar
27 Tong, H.D. Gielens, F.C. Gardeniers, J.G.E. Jansen, H.V. Rijn, C.J.M. van, Elwenspoek, M.C. and Nijdam, W. Ind. Eng. Chem. Res. 43 (2004) p.4182.CrossRefGoogle Scholar
28 Keurentjes, J.T.F. Gielens, F.C. Tong, H.D. Rijn, C.J.M. van, and Vorstman, M.A.G. Ind. Eng. Chem. Res. 43 (2004) p.4768.CrossRefGoogle Scholar
29 Ma, Y.H. Mardilovich, P.P. and She, Y.Hydrogen gas-extraction module and method of fabrication,” U.S. Patent 6,152, 987 (November 28, 2000).Google Scholar
30 Shu, J. Adnot, A. Grandjean, B.P.N. and Kaliaguine, S. Thin Solid Films 286 (1996) p. 72.CrossRefGoogle Scholar
31 Nam, S.E. and Lee, K.H. J. Membr. Sci. 192 (2001) p.177.CrossRefGoogle Scholar
32 Ma, Y.H. Mardilovich, P.P. and She, Y. Proc. ICIM 6 (Nagoya, Japan, 1998) p.246.Google Scholar
33 Ma, Y.H. Mardilovich, I.P. and Engwall, E.E. U.S. Patent Application 0244590; U.S. Patent Application 0244583; and U.S. Application 0237779 (2004).Google Scholar
34 Mardilovich, P.P. She, Y. and Ma, Y.H. AIChE J. 44 (1998) p.310.CrossRefGoogle Scholar
35 Knapton, A.G. Platinum Met. Rev. 21 (1977) p.44.Google Scholar
36 Piper, J., J.Appl. Phys. 37 (1966) p.715.CrossRefGoogle Scholar
37 Zetkin, A.S. Kagan, G.Y. and Levin, E.S. Phys. Met. Metall. 64 (1987) p.130.Google Scholar
38 Zetkin, A.S. Kagan, G.E. Varakshin, A.N. and Levin, E.S. Sov. Phys. Solid State 34 (1992) p.83.Google Scholar
39 Gao, H.Y. Lin, Y.S. Li, Y.D. and Zhang, B.Q. Ind. Eng. Chem. Res. 43 (2004) p.6920.CrossRefGoogle Scholar
40 Kamakoti, P. and Sholl, D.S. J. Membr. Sci. 225 (2003) p.145.CrossRefGoogle Scholar
41 Kamakoti, P. and Sholl, D.S. Phys. Rev. B71 045415 (2005).Google Scholar
42 Bhatia, B. Luo, X. Sholl, C.A. and Sholl, D.S. J.Phys. Cond. Mat. 16 (2004) p.8891.CrossRefGoogle Scholar
43 Bhatia, B. and Sholl, D.S. Phys. Rev. B72 224302 (2005).CrossRefGoogle Scholar
44 Jiang, D.E. and Carter, E. Phys. Rev. B70 064102 (2004).Google Scholar
45 Wolverton, C. Ozolinŝ, V., and Asta, M. Phys. Rev. B69 144109 (2004).CrossRefGoogle Scholar
46 Lu, G. and Kaxiras, E. Phys. Rev. Lett. 94 155501 (2005).Google Scholar
47 Kamakoti, P. and Sholl, D.S. J. Membr. Sci. 279 (2006) p.94.CrossRefGoogle Scholar
48 Skoulidas, A.I. and Sholl, D.S. AIChE J. 51 (2005) p.867.CrossRefGoogle Scholar