Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T20:58:52.865Z Has data issue: false hasContentIssue false

Data-driven design of inorganic materials with the Automatic Flow Framework for Materials Discovery

Published online by Cambridge University Press:  10 September 2018

Corey Oses
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, USA; [email protected]
Cormac Toher
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, USA; [email protected]
Stefano Curtarolo
Affiliation:
Duke University, USA; [email protected]
Get access

Abstract

The expansion of programmatically accessible materials data has cultivated opportunities for data-driven approaches. Workflows such as the Automatic Flow Framework for Materials Discovery not only manage the generation, storage, and dissemination of materials data, but also leverage the information for thermodynamic formability modeling, such as the prediction of phase diagrams and properties of disordered materials. In combination with standardized parameter sets, the wealth of data is ideal for training machine-learning algorithms, which have already been employed for property prediction, descriptor development, design rule discovery, and the identification of candidate functional materials. These methods promise to revolutionize the path to synthesis, and ultimately transform the practice of traditional materials discovery to one of rational and autonomous materials design.

Type
Data-Centric Science for Materials Innovation
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kohn, W., Sham, L.J., Phys. Rev. 140 (4), A1133 (1965). doi:10.1103/PhysRev.140.A1133.CrossRefGoogle Scholar
Parr, R.G., Yang, W., Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1994) pp. 142197.Google Scholar
Martin, R.M., Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, UK, 2004) pp. 119184, doi:10.1017/CBO9780511805769.CrossRefGoogle Scholar
Kresse, G., Fürthmüller, J., Phys. Rev. B Condens. Matter 54, 11169 (1996).CrossRefGoogle Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M., J. Phys. Condens. Matter 21, 395502 (2009).CrossRefGoogle Scholar
Gonze, X., Beuken, J.-M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.-M., Sindic, L., Verstraete, M., Zerah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M., Ghosez, P., Raty, J.-Y., Allan, D.C., Comput. Mater. Sci. 25, 478 (2002).CrossRefGoogle Scholar
Blum, V., Gehrke, R., Hanke, F., Havu, P., Havu, V., Ren, X., Reuter, K., Scheffler, M., Comput. Phys. Commun. 180, 2175 (2009).CrossRefGoogle Scholar
Haas, P., Tran, F., Blaha, P., Phys. Rev. B Condens. Matter 79, 085104 (2009).CrossRefGoogle Scholar
Curtarolo, S., Setyawan, W., Hart, G.L.W., Jahnátek, M., Chepulskii, R.V., Taylor, R.H., Wang, S., Xue, J., Yang, K., Levy, O., Mehl, M.J., Stokes, H.T., Demchenko, D.O., Morgan, D., Comput. Mater. Sci. 58, 218 (2012).CrossRefGoogle Scholar
Setyawan, W., Curtarolo, S., Comput. Mater. Sci. 49, 299 (2010).CrossRefGoogle Scholar
Calderon, C.E., Plata, J.J., Toher, C., Oses, C., Levy, O., Fornari, M., Natan, A., Mehl, M.J., Hart, G.L.W., Buongiorno Nardelli, M., Curtarolo, S., Comput. Mater. Sci. 108 (Pt. A), 233 (2015).CrossRefGoogle Scholar
Supka, A.R., Lyons, T.E., Liyanage, L.S.I., D’Amico, P., Al Rahal Al Orabi, R., Mahatara, S., Gopal, P., Toher, C., Ceresoli, D., Calzolari, A., Curtarolo, S., Buongiorno Nardelli, M., Fornari, M., Comput. Mater. Sci. 136, 76 (2017).CrossRefGoogle Scholar
Scheffler, M., Draxl, C., Computer Center of the Max Planck Society, Garching, NOMAD Repository (2014), http://nomad-repository.eu.Google Scholar
Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., Persson, K.A., APL Mater. 1, 011002 (2013).CrossRefGoogle Scholar
Saal, J.E., Kirklin, S., Aykol, M., Meredig, B., Wolverton, C., JOM 65, 1501 (2013).CrossRefGoogle Scholar
Landis, D.D., Hummelshøj, J.S., Nestorov, S., Greeley, J., Dułak, M., Bligaard, T., Nørskov, J.K., Jacobsen, K.W., Comput. Sci. Eng. 14, 51 (2012).CrossRefGoogle Scholar
Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N., Kozinsky, B., Comput. Mater. Sci. 111, 218 (2016).CrossRefGoogle Scholar
Curtarolo, S., Setyawan, W., Wang, S., Xue, J., Yang, K., Taylor, R.H., Nelson, L.J., Hart, G.L.W., Sanvito, S., Buongiorno Nardelli, M., Mingo, N., Levy, O., Comput. Mater. Sci. 58, 227 (2012).CrossRefGoogle Scholar
Taylor, R.H., Rose, F., Toher, C., Levy, O., Yang, K., Buongiorno Nardelli, M., Curtarolo, S., Comput. Mater. Sci. 93, 178 (2014).CrossRefGoogle Scholar
Rose, F., Toher, C., Gossett, E., Oses, C., Buongiorno Nardelli, M., Fornari, M., Curtarolo, S., Comput. Mater. Sci. 137, 362 (2017).CrossRefGoogle Scholar
Yang, K., Setyawan, W., Wang, S., Buongiorno Nardelli, M., Curtarolo, S., Nat. Mater. 11, 614 (2012).CrossRefGoogle Scholar
Isayev, O., Fourches, D., Muratov, E.N., Oses, C., Rasch, K., Tropsha, A., Curtarolo, S., Chem. Mater. 27, 735 (2015).CrossRefGoogle Scholar
Isayev, O., Oses, C., Toher, C., Gossett, E., Curtarolo, S., Tropsha, A., Nat. Commun. 8, 15679 (2017).CrossRefGoogle Scholar
Ceder, G., Chiang, Y.-M., Sadoway, D.R., Aydinol, M.K., Jang, Y.-I., Huang, B., Nature 392, 694 (1998).CrossRefGoogle Scholar
van Roekeghem, A., Carrete, J., Oses, C., Curtarolo, S., Mingo, N., Phys. Rev. X 6, 041061 (2016).Google Scholar
Legrain, F., Carrete, J., van Roekeghem, A., Curtarolo, S., Mingo, N., Chem. Mater. 29, 6220 (2017).CrossRefGoogle Scholar
Nyshadham, C., Oses, C., Hansen, J.E., Takeuchi, I., Curtarolo, S., Hart, G.L.W., Acta Mater. 122, 438 (2017).CrossRefGoogle Scholar
Perim, E., Lee, D., Liu, Y., Toher, C., Gong, P., Li, Y., Simmons, W.N., Levy, O., Vlassak, J.J., Schroers, J., Curtarolo, S., Nat. Commun. 7, 12315 (2016).CrossRefGoogle Scholar
Sanvito, S., Oses, C., Xue, J., Tiwari, A., Zic, M., Archer, T., Tozman, P., Venkatesan, M., Coey, J.M.D., Curtarolo, S., Sci. Adv. 3, e1602241 (2017).CrossRefGoogle Scholar
Bergerhoff, G., Hundt, R., Sievers, R., Brown, I.D., J. Chem. Inf. Comput. Sci. 23, 66 (1983).CrossRefGoogle Scholar
Mehl, M.J., Hicks, D., Toher, C., Levy, O., Hanson, R.M., Hart, G.L.W., Curtarolo, S., Comput. Mater. Sci. 136, S1 (2017).CrossRefGoogle Scholar
Hicks, D., Oses, C., Gossett, E., Gomez, G., Taylor, R.H., Toher, C., Mehl, M.J., Levy, O., Curtarolo, S., Acta Crystallogr. A Found. Adv. 74, 184 (2018).CrossRefGoogle Scholar
Toher, C., Oses, C., Plata, J.J., Hicks, D., Rose, F., Levy, O., de Jong, M., Asta, M.D., Fornari, M., Buongiorno Nardelli, M., Curtarolo, S., Phys. Rev. Mater. 1, 015401 (2017).CrossRefGoogle Scholar
Nath, P., Plata, J.J., Usanmaz, D., Al Rahal Al Orabi, R., Fornari, M., Buongiorno Nardelli, M., Toher, C., Curtarolo, S., Comput. Mater. Sci. 125, 82 (2016).CrossRefGoogle Scholar
Nath, P., Plata, J.J., Usanmaz, D., Toher, C., Fornari, M., Buongiorno Nardelli, M., Curtarolo, S., Scr. Mater. 129, 88 (2017).CrossRefGoogle Scholar
Plata, J.J., Nath, P., Usanmaz, D., Carrete, J., Toher, C., de Jong, M., Asta, M.D., Fornari, M., Buongiorno Nardelli, M., Curtarolo, S., NPJ Comput. Mater. 3, 45 (2017).CrossRefGoogle Scholar
Toher, C., Plata, J.J., Levy, O., de Jong, M., Asta, M.D., Buongiorno Nardelli, M., Curtarolo, S., Phys. Rev. B Condens. Matter 90, 174107 (2014).CrossRefGoogle Scholar
Yang, K., Oses, C., Curtarolo, S., Chem. Mater. 28, 6484 (2016).CrossRefGoogle Scholar
Hedin, L., Phys. Rev. 139, A796 (1965).CrossRefGoogle Scholar
Aryasetiawan, F., Gunnarsson, O., Rep. Prog. Phys. 61, 237 (1998).CrossRefGoogle Scholar
Jiang, H., Gomez-Abal, R.I., Rinke, P., Scheffler, M., Phys. Rev. B Condens. Matter 82, 045108 (2010).CrossRefGoogle Scholar
Ghiringhelli, L.M., Vybiral, J., Levchenko, S.V., Draxl, C., Scheffler, M., Phys. Rev. Lett. 114, 105503 (2015).CrossRefGoogle Scholar
Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M., Ghiringhelli, L.M., Phys. Rev. Mater. 2, 083802 (2018).CrossRefGoogle Scholar
Lederer, Y., Toher, C., Vecchio, K.S., Curtarolo, S., Acta Mater. (2018), doi:10.1016/j.actamat.2018.07.042.Google Scholar
Stanev, V., Oses, C., Kusne, A.G., Rodriguez, E., Paglione, J., Curtarolo, S., Takeuchi, I., NPJ Comput. Mater. 4, 29 (2018).CrossRefGoogle Scholar
Smith, J.S., Isayev, O., Roitberg, A.E., Chem. Sci. 8, 3192 (2017).CrossRefGoogle Scholar
Walsh, A., Nat. Chem. 7, 274 (2015).CrossRefGoogle Scholar
Curtarolo, S., Morgan, D., Ceder, G., Calphad 29, 163 (2005).CrossRefGoogle Scholar
Barber, C.B., Dobkin, D.P., Huhdanpaa, H., ACM Trans. Math. Softw. 22, 469 (1996).CrossRefGoogle Scholar
Hart, G.L.W., Curtarolo, S., Massalski, T.B., Levy, O., Phys. Rev. X 3, 041035 (2013).Google Scholar
Oses, C., Gossett, E., Hicks, D., Rose, F., Mehl, M.J., Perim, E., Takeuchi, I., Sanvito, S., Scheffler, M., Lederer, Y., Levy, O., Toher, C., Curtarolo, S., “AFLOW-CHULL: Cloud-Orientated Platform for Autonomous Phase Stability Analysis,” submitted arXiv:1806.06901 (2018).Google Scholar
Gao, M.C., Yeh, J.-W., Liaw, P.K., Zhang, Y., Eds., High-Entropy Alloys: Fundamentals and Applications (Springer, Cham, Switzerland, 2015).Google Scholar
Senkov, O.N., Miller, J.D., Miracle, D.B., Woodward, C., Nat. Commun. 6, 6529 (2015).CrossRefGoogle Scholar
Lim, X., Nature 533, 306 (2016).CrossRefGoogle Scholar
Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., Liaw, P.K., Intermetallics 18, 1758 (2010).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., Ritchie, R.O., Science 345, 1153 (2014).CrossRefGoogle Scholar
Senkov, O.N., Wilks, G.B., Scott, J.M., Miracle, D.B., Intermetallics 19, 698 (2011).CrossRefGoogle Scholar
Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., Tasan, C.C., Nature 534, 227 (2016).CrossRefGoogle Scholar
von Rohr, F., Winiarski, M.J., Tao, J., Klimczuk, T., Cava, R.J., Proc. Natl. Acad. Sci. U.S.A. 113, E7144 (2016).CrossRefGoogle Scholar
Rost, C.M., Sachet, E., Borman, T., Moballegh, A., Dickey, E.C., Hou, D., Jones, J.L., Curtarolo, S., Maria, J.-P., Nat. Commun. 6, 8485 (2015).CrossRefGoogle Scholar
Rak, Z., Rost, C.M., Lim, M., Sarker, P., Toher, C., Curtarolo, S., Maria, J.-P., Brenner, D.W., J. Appl. Phys. 120, 095105 (2016).CrossRefGoogle Scholar
Gild, J., Zhang, Y., Harrington, T., Jiang, S., Hu, T., Quinn, M.C., Mellor, W.M., Zhou, N., Vecchio, K., Luo, J., Sci. Rep. 6, 37946 (2016).CrossRefGoogle Scholar
Bérardan, D., Franger, S., Dragoe, D., Meena, A.K., Dragoe, N., Phys. Status Solidi RRL 10, 328 (2016).CrossRefGoogle Scholar
Bérardan, D., Franger, S., Meena, A.K., Dragoe, N., J. Mater. Chem. A 4, 9536 (2016).CrossRefGoogle Scholar
Hart, G.L.W., Forcade, R.W., Phys. Rev. B Condens. Matter 77, 224115 (2008).CrossRefGoogle Scholar
Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., Skiff, W.M., J. Am. Chem. Soc. 114, 10024 (1992).CrossRefGoogle Scholar
Chen, W., Ketkaew, J., Liu, Z., Ojeda Mota, R.M., O’Brien, K., da Silva, C.S., Schroers, J., Scr. Mater. 107, 1 (2015).CrossRefGoogle Scholar
Schroers, J., Paton, N., Adv. Mater. Proc. 164, 61 (2006).Google Scholar
Schroers, J., Hodges, T.M., Kumar, G., Raman, H., Barnes, A.J., Pham, Q., Waniuk, T.A., Mater. Today 14, 14 (2011).CrossRefGoogle Scholar
Kaltenboeck, G., Demetriou, M.D., Roberts, S., Johnson, W.L., Nat. Commun. 7, 10576 (2016).CrossRefGoogle Scholar
Schroers, J., Adv. Mater. 22, 1566 (2010).CrossRefGoogle Scholar
Johnson, W.L., Na, J.H., Demetriou, M.D., Nat. Commun. 7, 10313 (2016).CrossRefGoogle Scholar
Ashby, M.F., Greer, A.L., Scr. Mater. 54, 321 (2006).CrossRefGoogle Scholar
Daams, J.L.C., Villars, P., Eng. Appl. Artif. Intell. 13, 507 (2000).CrossRefGoogle Scholar
Daams, J.L.C., van Vucht, J.H.N., Villars, P., J. Alloys Compd. 182, 1 (1992).CrossRefGoogle Scholar
van de Walle, A., Calphad 33, 266 (2009).CrossRefGoogle Scholar
Usanmaz, D., Nath, P., Toher, C., Plata, J.J., Friedrich, R., Fornari, M., Buongiorno Nardelli, M., Curtarolo, S., Chem. Mater. 30, 2331 (2018).CrossRefGoogle Scholar
Usanmaz, D., Nath, P., Plata, J.J., Hart, G.L.W., Takeuchi, I., Buongiorno Nardelli, M., Fornari, M., Curtarolo, S., Phys. Chem. Chem. Phys. 18, 5005 (2016).CrossRefGoogle Scholar
Bhadeshia, H.K.D.H., ISIJ Int. 39, 966 (1999).CrossRefGoogle Scholar
Pyzer-Knapp, E.O., Li, K., Aspuru-Guzik, A., Adv. Funct. Mater. 25, 6495 (2015).CrossRefGoogle Scholar
Gómez-Bombarelli, R., Aguilera-Iparraguirre, J., Hirzel, T.D., Duvenaud, D., Maclaurin, D., Blood-Forsythe, M.A., Chae, H.S., Einzinger, M., Ha, D.-G., Wu, T., Markopoulos, G., Jeon, S., Kang, H., Miyazaki, H., Numata, M., Kim, S., Huang, W., Hong, S.I., Baldo, M., Adams, R.P., Aspuru-Guzik, A., Nat. Mater. 15, 1120 (2016).CrossRefGoogle Scholar
Sumpter, B.G., Noid, D.W., Annu. Rev. Mater. Sci. 26, 223 (1996).CrossRefGoogle Scholar
Breiman, L., Mach. Learn. 45, 5 (2001).CrossRefGoogle Scholar
Friedman, J.H., Ann. Stat. 29, 1189 (2001).CrossRefGoogle Scholar
Cortes, C., Vapnik, V., Mach. Learn. 20, 273 (1995).Google Scholar
de Jong, M., Chen, W., Notestine, R., Persson, K.A., Ceder, G., Jain, A., Asta, M.D., Gamst, A., Sci. Rep. 6, 34256 (2016).CrossRefGoogle Scholar
Carrete, J., Li, W., Mingo, N., Wang, S., Curtarolo, S., Phys. Rev. X 4, 011019 (2014).Google Scholar
Bajusz, D., Rácz, A., Héberger, K., J. Cheminform. 7, 20 (2015).CrossRefGoogle Scholar
National Institute of Materials Science (NIMS), SuperCon (2011), http://supercon.nims.go.jp/index_en.html.Google Scholar
Henkelman, G., Arnaldsson, A., Jónsson, H., Comput. Mater. Sci. 36, 354 (2006).CrossRefGoogle Scholar
Gossett, E., Toher, C., Oses, C., Isayev, O., Legrain, F., Rose, F., Zurek, E., Carrete, J., Mingo, N., Tropsha, A., Curtarolo, S., Comput. Mater. Sci. 152, 134 (2018).CrossRefGoogle Scholar
Crockford, D., JavaScript Object Notation (JSON) Format (2017), http://www.json.org.Google Scholar