Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Tanaka, Isao
Rajan, Krishna
and
Wolverton, Christopher
2018.
Data-centric science for materials innovation.
MRS Bulletin,
Vol. 43,
Issue. 9,
p.
659.
Siol, Sebastian
2019.
Accessing Metastability in Heterostructural Semiconductor Alloys.
physica status solidi (a),
Vol. 216,
Issue. 15,
Ford, Denise C.
Hicks, David
Oses, Corey
Toher, Cormac
and
Curtarolo, Stefano
2019.
Metallic glasses for biodegradable implants.
Acta Materialia,
Vol. 176,
Issue. ,
p.
297.
Pollock, Tresa M.
and
Van der Ven, Anton
2019.
The evolving landscape for alloy design.
MRS Bulletin,
Vol. 44,
Issue. 4,
p.
238.
Friedrich, Rico
Usanmaz, Demet
Oses, Corey
Supka, Andrew
Fornari, Marco
Buongiorno Nardelli, Marco
Toher, Cormac
and
Curtarolo, Stefano
2019.
Coordination corrected ab initio formation enthalpies.
npj Computational Materials,
Vol. 5,
Issue. 1,
Kautz, Elizabeth J.
Hagen, Alexander R.
Johns, Jesse M.
and
Burkes, Douglas E.
2019.
A machine learning approach to thermal conductivity modeling: A case study on irradiated uranium-molybdenum nuclear fuels.
Computational Materials Science,
Vol. 161,
Issue. ,
p.
107.
Toher, Cormac
Oses, Corey
Hicks, David
and
Curtarolo, Stefano
2019.
Unavoidable disorder and entropy in multi-component systems.
npj Computational Materials,
Vol. 5,
Issue. 1,
Zhang, Qian
Zhang, Jinyong
Li, Neng
and
Chen, Wenjie
2019.
Understanding the electronic structure, mechanical properties, and thermodynamic stability of (TiZrHfNbTa)C combined experiments and first-principles simulation.
Journal of Applied Physics,
Vol. 126,
Issue. 2,
Kautz, Elizabeth
Ma, Wufei
Jana, Saumyadeep
Devaraj, Arun
Joshi, Vineet
Yener, Bülent
and
Lewis, Daniel
2020.
An image-driven machine learning approach to kinetic modeling of a discontinuous precipitation reaction.
Materials Characterization,
Vol. 166,
Issue. ,
p.
110379.
Onat, Berk
Ortner, Christoph
and
Kermode, James R.
2020.
Sensitivity and dimensionality of atomic environment representations used for machine learning interatomic potentials.
The Journal of Chemical Physics,
Vol. 153,
Issue. 14,
Oses, Corey
Toher, Cormac
and
Curtarolo, Stefano
2020.
High-entropy ceramics.
Nature Reviews Materials,
Vol. 5,
Issue. 4,
p.
295.
Kaufmann, Kevin
Maryanovsky, Daniel
Mellor, William M.
Zhu, Chaoyi
Rosengarten, Alexander S.
Harrington, Tyler J.
Oses, Corey
Toher, Cormac
Curtarolo, Stefano
and
Vecchio, Kenneth S.
2020.
Discovery of high-entropy ceramics via machine learning.
npj Computational Materials,
Vol. 6,
Issue. 1,
Wan, Yangyang
Ramirez, Fernando
Zhang, Xu
Nguyen, Thuc-Quyen
Bazan, Guillermo C.
and
Lu, Gang
2021.
Data driven discovery of conjugated polyelectrolytes for optoelectronic and photocatalytic applications.
npj Computational Materials,
Vol. 7,
Issue. 1,
Mehl, Michael J.
Ronquillo, Mateo
Hicks, David
Esters, Marco
Oses, Corey
Friedrich, Rico
Smolyanyuk, Andriy
Gossett, Eric
Finkenstadt, Daniel
and
Curtarolo, Stefano
2021.
Tin-pest problem as a test of density functionals using high-throughput calculations.
Physical Review Materials,
Vol. 5,
Issue. 8,
Baskaran, Arun
Kautz, Elizabeth J.
Chowdhary, Aritra
Ma, Wufei
Yener, Bulent
and
Lewis, Daniel J.
2021.
Adoption of Image-Driven Machine Learning for Microstructure Characterization and Materials Design: A Perspective.
JOM,
Vol. 73,
Issue. 11,
p.
3639.
Müller, Adrien
Karathanasopoulos, Nikos
Roth, Christian C.
and
Mohr, Dirk
2021.
Machine Learning Classifiers for Surface Crack Detection in Fracture Experiments.
International Journal of Mechanical Sciences,
Vol. 209,
Issue. ,
p.
106698.
Hossain, Mohammad Delower
Borman, Trent
Oses, Corey
Esters, Marco
Toher, Cormac
Feng, Lun
Kumar, Abinash
Fahrenholtz, William G.
Curtarolo, Stefano
Brenner, Donald
LeBeau, James M.
and
Maria, Jon‐Paul
2021.
Entropy Landscaping of High‐Entropy Carbides.
Advanced Materials,
Vol. 33,
Issue. 42,
Hicks, David
Mehl, Michael J.
Esters, Marco
Oses, Corey
Levy, Ohad
Hart, Gus L.W.
Toher, Cormac
and
Curtarolo, Stefano
2021.
The AFLOW Library of Crystallographic Prototypes: Part 3.
Computational Materials Science,
Vol. 199,
Issue. ,
p.
110450.
Hicks, David
Toher, Cormac
Ford, Denise C.
Rose, Frisco
Santo, Carlo De
Levy, Ohad
Mehl, Michael J.
and
Curtarolo, Stefano
2021.
AFLOW-XtalFinder: a reliable choice to identify crystalline prototypes.
npj Computational Materials,
Vol. 7,
Issue. 1,
Friedrich, Rico
Esters, Marco
Oses, Corey
Ki, Stuart
Brenner, Maxwell J.
Hicks, David
Mehl, Michael J.
Toher, Cormac
and
Curtarolo, Stefano
2021.
Automated coordination corrected enthalpies with AFLOW-CCE.
Physical Review Materials,
Vol. 5,
Issue. 4,