Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T08:30:46.509Z Has data issue: false hasContentIssue false

Biorenewable nanocomposites

Published online by Cambridge University Press:  16 September 2011

Luc Avérous
Affiliation:
Laboratory of Engineering Polymers for High Technologies at the University of Strasbourg, France; [email protected]
Eric Pollet
Affiliation:
Laboratory of Engineering Polymers for High Technologies at the University of Strasbourg, France; [email protected]
Get access

Abstract

In recent years, bio-based products have been of great interest since sustainable development policies have tended to expand with decreasing reserves of fossil fuels and growing concerns for the environment. Consequently, biodegradable and renewable polymers have been the topic of significant research. These polymers can mainly be classified as agro-polymers (starch, chitosan) and biopolyesters (polyhydroxyalkanoates, poly(lactic acid)). Unfortunately, for certain applications, these bio-based polymers cannot be fully competitive with conventional thermoplastics since some of their properties are too weak. Therefore, to extend the range of their applications, current bio-based polymers have to be reformulated. Some of the most promising are nano-biocomposites, where nano-sized fillers are dispersed into a biopolymer matrix, which could yield a range of improved properties (stiffness, permeability). This article reports the most recent developments in renewable nano-biocomposites based on the use of nanoclay fillers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Averous, L., Boquillon, N., Carbohydr. Polym. 56, 111 (2004).Google Scholar
2.Hendricks, S.B., J. Geol. 50, 276 (1942).Google Scholar
3.Thomas, F., Michot, L.J., Vantelon, D., Montarges, E., Prelot, B., Cruchaudet, M., Delon, J.F., Colloids Surf., A 159, 351 (1999).CrossRefGoogle Scholar
4.Alexandre, M., Dubois, P., Mater. Sci. Eng., R 28, 1 (2000).Google Scholar
5.Sinha Ray, S., Okamoto, M., Prog. Polym. Sci. 28, 1539 (2003).CrossRefGoogle Scholar
6.Dai, J.C., Huang, J.T., Appl. Clay Sci. 15, 51 (1999).CrossRefGoogle Scholar
7.Ke, Y., , J., Yi, X., Zhao, J., Qi, Z., J. Appl. Polym. Sci. 78, 808 (2000).Google Scholar
8.Shen, Z., Simon, G.P., Cheng, Y.B., Polymer 43, 4251 (2002).Google Scholar
9.Fischer, H.R., Gielgens, L.H., Koster, T.P.M., Acta Polym. 50, 122 (1999).Google Scholar
10.Lagaly, G., Solid State Ionics 22, 43 (1986).Google Scholar
11.Vaia, R.A., Giannelis, E.P., Macromolecules 30, 8000 (1997).Google Scholar
12.Shogren, R.L., Carbohydr. Polym. 19, 83 (1992).CrossRefGoogle Scholar
13.Swanson, C.L., Shogren, R.L., Fanta, G.F., Imam, S.H., J. Environ. Polym. Degrad. 1, 155 (1993).CrossRefGoogle Scholar
14.Wilhelm, H.-M., Sierakowski, M.-R., Souza, G.P., Wypych, F., Polym. Int. 52, 1035 (2003).CrossRefGoogle Scholar
15.Kampeerapappun, P., Aht-ong, D., Pentrakoon, D., Srikulkit, K., Carbohydr. Polym. 67, 155 (2007).CrossRefGoogle Scholar
16.Chiou, B.-S., Yee, E., Glenn, G.M., Orts, W.J., Carbohydr. Polym. 59, 467 (2005).CrossRefGoogle Scholar
17.Park, H.M., Li, X., Jin, C.Z., Park, C.Y., Cho, W.J., Ha, C.S., Macromol. Mater. Eng. 287, 553 (2002).3.0.CO;2-3>CrossRefGoogle Scholar
18.Chen, B., Evans, J.R.G., Carbohydr. Polym. 61, 455 (2005).Google Scholar
19.Park, H.M., Lee, W.K., Park, C.Y., Cho, W.J., Ha, C.S., J. Mater. Sci. 38, 909 (2003).CrossRefGoogle Scholar
20.Zhang, Q.X., Yu, Z.Z., Xie, X.L., Naito, K., Kagawa, Y., Polymer 48, 7193 (2007).Google Scholar
21.Chiou, B.-S., Yee, E., Wood, D., Shey, J., Glenn, G., Orts, W., Cereal Chem. 83, 300 (2006).Google Scholar
22.Avella, M., De Vlieger, J.J., Errico, M.E., Fischer, S., Vacca, P., Volpe, M.G., Food Chem. 93, 467 (2005).Google Scholar
23.Chiou, B.S., Wood, D., Yee, E., Imam, S.H., Glenn, G.M., Orts, W.J., Polym. Eng. Sci. 47, 1898 (2007).CrossRefGoogle Scholar
24.Chiou, B.S., Yee, E., Glenn, G.M., Orts, W.J., Wood, D.F., Imam, S.H., in ACS National Meeting Book of Abstracts (2004).Google Scholar
25.Huang, M.F., Yu, J.G., Ma, X.F., Polymer 45, 7017 (2004).Google Scholar
26.Pandey, J.K., Singh, R.P., Starch/Staerke 57, 8 (2005).CrossRefGoogle Scholar
27.Cyras, V.P., Manfredi, L.B., Ton-That, M.T., Vazquez, A., Carbohydr. Polym. 73, 55 (2008).CrossRefGoogle Scholar
28.Ma, X., Yu, J., Wang, N., Macromol. Mater. Eng. 292, 723 (2007).CrossRefGoogle Scholar
29.Dean, K., Yu, L., Wu, D.Y., Compos. Sci. Technol. 67, 413 (2007).Google Scholar
30.Huang, M., Yu, J., J. Appl. Polym. Sci. 99, 170 (2006).CrossRefGoogle Scholar
31.Huang, M., Yu, J., Ma, X., Acta Polym. Sin., 862 (2005).Google Scholar
32.Huang, M., Yu, J., Ma, X., Carbohydr. Polym. 63, 393 (2006).Google Scholar
33.Huang, M.F., Yu, J.G., Ma, X.F., Chin. Chem. Lett. 16, 561 (2005).Google Scholar
34.Huang, M.F., Yu, J.G., Ma, X.F., Jin, P., Polymer 46, 3157 (2005).Google Scholar
35.Bagdi, K., Muller, P., Pukanszky, B., Compos. Interfaces 13, 1 (2006).CrossRefGoogle Scholar
36.Tang, X., Alavi, S., Herald, T.J., Cereal Chem. 85, 433 (2008).Google Scholar
37.Tang, X., Alavi, S., Herald, T.J., Carbohydr. Polym. 74, 552 (2008).Google Scholar
38.Chaudhary, D.S., J. Polym. Sci., Part B: Polym. Phys. 46, 979 (2008).Google Scholar
39.Lilichenko, N., Maksimov, R.D., Zicans, J., Merijs Meri, R., Plume, E., Mech. Compos. Mater. 44, 45 (2008).Google Scholar
40.Mondragon, M., Mancilla, J.E., Rodriguez-Gonzalez, F.J., Polym. Eng. Sci. 48, 1261 (2008).Google Scholar
41.Dean, K.M., Do, M.D., Petinakis, E., Yu, L., Compos. Sci. Technol. 68, 1453 (2008).Google Scholar
42.Chen, M., Chen, B., Evans, J.R.G., Nanotechnology 16, 2334 (2005).Google Scholar
43.Lee, S.Y., Xu, Y.X., Hanna, M.A., Int. Polym. Proc. 22, 429 (2007).CrossRefGoogle Scholar
44.Lee, S.Y., Hanna, M.A., J. Appl. Polym. Sci. 110, 2337 (2008).CrossRefGoogle Scholar
45.Lee, S.Y., Hanna, M.A., Jones, D.D., Starch/Staerke 60, 159 (2008).Google Scholar
46.Lee, S.Y., Chen, H., Hanna, M.A., Ind. Crop. Prod. 28, 95 (2008).CrossRefGoogle Scholar
47.Chivrac, F., Pollet, E., Averous, L., Biomacromolecules 9, 896 (2008).CrossRefGoogle Scholar
48.Darder, M., Colilla, M., Ruiz-Hitzky, E., Chem. Mater. 15, 3774 (2003).Google Scholar
49.Xu, Y., Ren, X., Hanna, M.A., J. Appl. Polym. Sci. 99, 1684 (2006).Google Scholar
50.Günister, E., Pestreli, D., Unlu, C.H., Atici, O., Gungor, N., Carbohydr. Polym. 67, 358 (2007).Google Scholar
51.Darder, M., Colilla, M., Ruiz-Hitzky, E., Appl. Clay Sci. 28, 199 (2005).Google Scholar
52.Wang, S., Chen, L., Tong, Y., J. Polym. Sci., Part A: Polym. Chem. 44, 686 (2006).Google Scholar
53.Wang, S.F., Shen, L., Tong, Y.J., Chen, L., Phang, I.Y., Lim, P.Q., Liu, T.X., Polym. Degrad. Stab. 90, 123 (2005).CrossRefGoogle Scholar
54.Wang, X., Du, Y., Yang, J., X., W., Shi, X., Hu, Y., Polymer 47, 6738 (2006).CrossRefGoogle Scholar
55.Bordes, P., Pollet, E., Avérous, L., Prog. Polym. Sci. 34 (2009).CrossRefGoogle Scholar
56.Ogata, N., Jimenez, G., Kawai, H., Ogihara, T., J. Polym. Sci., Part B: Polym. Phys. 35, 389 (1997).Google Scholar
57.Krikorian, V., Pochan, D.J., Chem. Mater. 15, 4317 (2003).Google Scholar
58.Wu, T.-M., Wu, C.-Y., Polym. Degrad. Stab. 91, 2198 (2006).CrossRefGoogle Scholar
59.Pluta, M., Galeski, A., Alexandre, M., Paul, M.-A., Dubois, P., J. Appl. Polym. Sci. 86, 1497 (2002).Google Scholar
60.Maiti, P., Giannelis, E.P., Batt, C.A., in Materials Research Society Symposium Proceedings 740, 141 (2002).Google Scholar
61.Maiti, P., Yamada, K., Okamoto, M., Ueda, K., Okamoto, K., Chem. Mater. 14, 4654 (2002).CrossRefGoogle Scholar
62.Sinha Ray, S., Yamada, K., Okamoto, M., Ueda, K., Nano Lett. 2, 1093 (2002).Google Scholar
63.Sinha Ray, S., Yamada, K., Ogami, A., Okamoto, M., Ueda, K., Macromol. Rapid Commun. 23, 943 (2002).Google Scholar
64.Sinha Ray, S., Maiti, P., Okamoto, M., Yamada, K., Ueda, K., Macromolecules 35, 3104 (2002).CrossRefGoogle Scholar
65.Sinha Ray, S., Yamada, K., Okamoto, M., Ueda, K., Polymer 44, 857 (2003).Google Scholar
66.Sinha Ray, S., Yamada, K., Okamoto, M., Ogami, A., Ueda, K., Chem. Mater. 15, 1456 (2003).Google Scholar
67.Sinha Ray, S., Yamada, K., Okamoto, M., Ogami, A., Ueda, K., Compos. Interfaces 10, 435 (2003).Google Scholar
68.Sinha Ray, S., Yamada, K., Okamoto, M., Fujimoto, Y., Ogami, A., Ueda, K., Polymer 44, 6633 (2003).CrossRefGoogle Scholar
69.Sinha Ray, S., Okamoto, M., Macromol. Mater. Eng. 288, 936 (2003).Google Scholar
70.Sinha Ray, S., Okamoto, M., Macromol. Rapid Commun. 24, 815 (2003).Google Scholar
71.Sinha Ray, S., Yamada, K., Okamoto, M., Ueda, K., J. Nanosci. Nanotechnol. 3, 503 (2003).Google Scholar
72.Nam, P.H., Fujimori, A., Masuko, T., J. Appl. Polym. Sci. 93, 2711 (2004).Google Scholar
73.Paul, M.-A., Delcourt, C., Alexandre, M., Degée, P., Monteverde, F., Dubois, P., Polym. Degrad. Stab. 87, 535 (2005).Google Scholar
74.Yoshida, O., Okamoto, M., Macromol. Rapid Commun. 27, 751 (2006).Google Scholar
75.Lewitus, D., McCarthy, S., Ophir, A., Kenig, S., J. Polym. Environ. 14, 171 (2006).CrossRefGoogle Scholar
76.Paul, M.-A., Alexandre, M., Degée, P., Henrist, C., Rulmont, A., Dubois, P., Polymer 44, 443 (2003).Google Scholar
77.Pluta, M., Polymer 45, 8239 (2004).CrossRefGoogle Scholar
78.Paul, M.-A., Delcourt, C., Alexandre, M., Degée, P., Monteverde, F., Rulmont, A., Dubois, P., Macromol. Chem. Phys. 206, 484 (2005).Google Scholar
79.Pluta, M., Paul, M.-A., Alexandre, M., Dubois, P., J. Polym. Sci., Part B: Polym. Phys. 44, 299 (2006).Google Scholar
80.Pluta, M., Paul, M.-A., Alexandre, M., Dubois, P., J. Polym. Sci., Part B: Polym. Phys. 44, 312 (2006).Google Scholar
81.Tanoue, S., Hasook, A., Iemoto, Y., Unryu, T., Polym. Compos. 27, 256 (2006).Google Scholar
82.Shibata, M., Someya, Y., Orihara, M., Miyoshi, M., J. Appl. Polym. Sci. 99, 2594 (2006).Google Scholar
83.Paul, M.-A., Alexandre, M., Degée, P., Calberg, C., Jerome, R., Dubois, P., Macromol. Rapid Commun. 24, 561 (2003).CrossRefGoogle Scholar
84.Maiti, P., Batt, C.A., Giannelis, E.P., Polym. Mater. Sci. Eng. 88, 58 (2003).Google Scholar
85.Hablot, E., Bordes, P., Pollet, E., Avérous, L., Polym. Degrad. Stab. 93, 413 (2008).CrossRefGoogle Scholar
86.Lim, S.T., Hyun, Y.H., Lee, C.H., Choi, H.J., J. Mater. Sci. Lett. 22, 299 (2003).Google Scholar
87.Choi, W.M., Kim, T.W., Park, O.O., Chang, Y.K., Lee, J.W., J. Appl. Polym. Sci. 90, 525 (2003).Google Scholar
88.Wang, S., Song, C., Chen, G., Guo, T., Liu, J., Zhang, B., Takeuchi, S., Polym. Degrad. Stab. 87, 69 (2005).CrossRefGoogle Scholar
89.Chen, G.X., Hao, G.J., Guo, T.Y., Song, M.D., Zhang, B.H., J. Appl. Polym. Sci. 93, 655 (2004).Google Scholar
90.Chen, G.X., Hao, G.J., Guo, T.Y., Song, M.D., Zhang, B.H., J. Mater. Sci. Lett. 21, 1587 (2002).Google Scholar
91.Misra, M., Desai, S.M., Mohanty, A.K., Drzal, L.T., in Annual Technical Conference–ANTEC, Conference Proceeding (2004).Google Scholar
92.Drzal, L.T., Misra, M., Mohanty, A.K., in U.S. EPA STAR Progress Review Workshop–Nanotechnology and the Environment II, Philadelphia (2004).Google Scholar