Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T08:25:27.876Z Has data issue: false hasContentIssue false

Biomineralization: Biomimetic Potential at the Inorganic-Organic Interface

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The impetus for a biomimetic approach to mineralization stems from the need for increasingly sophisticated materials showing greater efficiency, specialization, and optimization—properties that ultimately depend on the control of molecular and supramolecular structure, and hence on methods of predictive chemical fabrication. Biomineralization is of central importance to the development of new approaches in materials science because, as discussed in the preceding article by Fink, the formation of bioinorganic materials, such as bones, shells, and teeth is highly regulated and responsive to the surrounding environment in a manner not achieved by conventional synthetic routes. Some possible areas of overlap are shown in Figure 1. As in the other areas of biomaterials discussed in this and next month's issue of the MRS Bulletin, there are two potential connections between the natural processes of biomineralization and the synthetic demands of materials science; first, the commercial exploitation of biologically derived, tailored materials, and second, the assimilation and adaptation of biological concepts and mechanisms into “artificial” materials design and synthesis. The former is an extension of biotechnology, by which microbial systems could be utilized to produce mineral powders. Some of the possible processes have been discussed elsewhere. In general, the use of biological sources is only applicable where the high production costs are offset by a marketable specialty product. While this is feasible for organic-based products such as polyhydroxybutyrate (see next month's MRS Bulletin) it imposes a severe limitation when we transfer the approach to biomineralization.

Type
Biology and Materials Synthesis
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mann, S. and Calvert, P.D., Trends in Biotechnology 5 (1987) p. 309314.CrossRefGoogle Scholar
2.Matsunaga, T. and Kamiya, S., Appl. Microbiol. Biotechnol. 26 (1987) p. 328333.CrossRefGoogle Scholar
3.Sharma, N.K., Williams, W.S., and Zangvil, A.J., Am. Ceram. Soc. 67 (1984) p. 715720.CrossRefGoogle Scholar
4.Roy, D., New Scientist 72 (1976) p. 163165.Google Scholar
5.Mann, S., Nature 349 (1991) p. 285286.CrossRefGoogle Scholar
6.Materials Synthesis Utilizing Biological Processes, edited by Reike, P.C., Calvert, P.D. and Alper, M., (Mater. Res. Soc. Symp. Proc. 174, Pittsburgh, PA, 1990).Google Scholar
7.Heuer, A.H., Fink, D.J., Laraia, V.J., Arias, J.L., Calvert, P.D., Kendall, K., Messing, G.L., Blackwell, J., Rieke, P.C., Thompson, D.H., Wheeler, A.P., Vies, A., and Caplan, A.I., Science 225 (1992) p. 10981105.CrossRefGoogle Scholar
8.Calvert, P.D. and Mann, S.J., J. Mater. Sci. 23 (1988) p. 38013815.CrossRefGoogle Scholar
9.Bianconi, P.A., Lin, J., and Strzelecki, A.R., Nature 349 (1991) p. 315317.CrossRefGoogle Scholar
10.Dalas, E., J. Mater. Chem. 1 (1991) p. 473474.CrossRefGoogle Scholar
11.Mann, S., Nature 332 (1988) p. 119124.CrossRefGoogle Scholar
12.Lowenstam, H.A., Science 211 (1981) p. 11261131.CrossRefGoogle Scholar
13.Titiloye, J.O., Parker, S.C., Osguthorpe, D.J., and Mann, S., J. Chem. Soc. Chem. Commun. (1991) p. 14941496.Google Scholar
14.Lowenstam, H.A. and Weiner, S., On Biomineralization, O.U.P., 1989.CrossRefGoogle Scholar
15.Dameron, C.T., Reese, R.N., Mehra, R.K., Kortan, A.R., Carroll, P.J., Steigerwald, M.L., Brus, L.E., and Winge, D.R., Nuture 338 (1989) p. 596597.CrossRefGoogle Scholar
16.Mann, S. and Frankel, R.B. in Biomineralization: Chemical and Biochemical Perspectives, edited by Mann, S., Webb, J., and Williams, R.J.P. (VCH Verlagsgesellschaft, 1989) p. 389426.Google Scholar
17.Mann, S. and Williams, R.J.P., J. Chem. Soc. Dalton Trans. (1983) p. 311316.Google Scholar
18.Mann, S., Skarnulis, A.J., and Williams, R.J.P., Israel J. Chem. 21 (1981) p. 37.CrossRefGoogle Scholar
19.Heywood, B.R. and Eanes, E.D., Calcif. Tissue Int. 41 (1987) p. 192201.CrossRefGoogle Scholar
20.Mann, S., Hannington, J.P., and Williams, R.J.P., Nature 324 (1986) p. 565567.CrossRefGoogle Scholar
21.Bhandarkar, S. and Bose, A., J. Colloid. Interface Sci. 135 (1990) p. 531538.CrossRefGoogle Scholar
22.Yager, P., Schoen, P.E., Davies, C., Price, R., and Singh, A., Biophys. J. 48 (1985) p. 899906.CrossRefGoogle Scholar
23.Ford, G.C., Harrison, P.M., Rice, D.W., Smith, J.M.A., Treffry, A., White, J.L., and Yariv, J., Philos. Trans. R. Soc. London, Ser. B 304 (1984) p. 551565.Google Scholar
24.Meldrum, F.C., Wade, V.J., Nimmo, D.L., Heywood, B.R., and Mann, S., Nature 349 (1991) p. 684687.CrossRefGoogle Scholar
25.Levi, L., Luzzago, A., Cesareni, G., Cozzi, A., Franceschinelli, F., Albertini, A., and Arosio, P., J. Biol. Chem. 263 (1988) p. 1808618092.CrossRefGoogle Scholar
26.Lawson, D.M., Artymiuk, P.J., Yewdall, S.J., Smith, J.M.A., Livingstone, J.C., Treffry, A., Luzzago, A., Levi, S., Arosio, P., Cesareni, G., Thomas, C.D., Shaw, W.V., and Harrison, P.M., Nature 349 (1991) p. 541544.CrossRefGoogle Scholar
27.Wade, V.J., Levi, S., Arosio, P., Treffry, A., Harrison, P.M., and Mann, S., J. Mol. Biol. 221 (1991) p. 14431452.CrossRefGoogle Scholar
28.Mann, S., Heywood, B.R., Rajam, S., and Birchall, J.D., Nature 334 (1988) p. 692695.CrossRefGoogle Scholar
29.Mann, S., Heywood, B.R., Rajam, S., and Walker, J.B.A., J. Appl. Phys. 24 (1991) p. 154164.Google Scholar
30.Mann, S., Heywood, B.R., Rajam, S., Walker, J.B.A., Davey, R.J., and Birchall, J.D., Adv. Materials 2 (1990) p. 257261.CrossRefGoogle Scholar
31.Heywood, B.R. and Mann, S., Adv. Materials 4 (1992) p. 278282.CrossRefGoogle Scholar
32.Mann, S., Didymus, J.M., Sanderson, N.P., Heywood, B.R., and Samper, E.J.A., in J. Chem. Soc. Faraday Trans. 86 (1990) p. 18731880.CrossRefGoogle Scholar
33.Didymus, J.M., Mann, S., Sanderson, N.P., Heywood, B.R., and Samper, E.J.A., in Proc. Sixth International Conference on Biomineralization, edited by Suga, S. (Springer Verlag, 1991) p. 267272.Google Scholar
34.Berman, A., Addadi, L., and Weiner, S., Nature 331 (1988) p. 546548.Google Scholar
35.Sikes, C.S., Yeung, M.L., and Wheeler, A.P., in Surface Reactive Peptides and Polymers, edited by Sikes, C.S. and Wheeler, A.P. (ACS Symposium 444) p. 5071.Google Scholar
36.Davey, R.J., Black, S.N., Bromley, L.A., Cottier, D., Dobbs, B., and Rout, J.E., Nature 353 (1991) p. 549550.CrossRefGoogle Scholar
37.Heywood, B.R. and Mann, S., unpublished data.Google Scholar