Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Brough, David B
Wheeler, Daniel
and
Kalidindi, Surya R.
2017.
Materials Knowledge Systems in Python—a Data Science Framework for Accelerated Development of Hierarchical Materials.
Integrating Materials and Manufacturing Innovation,
Vol. 6,
Issue. 1,
p.
36.
DeCost, Brian L.
Hecht, Matthew D.
Francis, Toby
Webler, Bryan A.
Picard, Yoosuf N.
and
Holm, Elizabeth A.
2017.
UHCSDB: UltraHigh Carbon Steel Micrograph DataBase.
Integrating Materials and Manufacturing Innovation,
Vol. 6,
Issue. 2,
p.
197.
Furrer, David U.
Dimiduk, Dennis M.
Cotton, James D.
and
Ward, Charles H.
2017.
Making the Case for a Model-Based Definition of Engineering Materials.
Integrating Materials and Manufacturing Innovation,
Vol. 6,
Issue. 3,
p.
249.
Chusov, I A
Kirillov, P L
Bogoslovskaya, G P
Yunusov, L K
Obysov, N A
Novikov, G E
Pronyaev, V G
Erkimbaev, A O
Zitserman, V Yu
Kobzev, G A
Trachtengerts, M S
and
Fokin, L R
2017.
Development of the system of reactor thermophysical data on the basis of ontological modelling.
Journal of Physics: Conference Series,
Vol. 891,
Issue. ,
p.
012172.
Erkimbaev, A. O.
Zitserman, V. Yu.
and
Kobzev, G. A.
2017.
The intensive use of digital data in modern natural science.
Automatic Documentation and Mathematical Linguistics,
Vol. 51,
Issue. 5,
p.
201.
Rumble, John R.
2017.
Accessing Materials Data: Challenges and Directions in the Digital Era.
Integrating Materials and Manufacturing Innovation,
Vol. 6,
Issue. 2,
p.
172.
Vasudevan, Rama K.
Laanait, Nouamane
Ferragut, Erik M.
Wang, Kai
Geohegan, David B.
Xiao, Kai
Ziatdinov, Maxim
Jesse, Stephen
Dyck, Ondrej
and
Kalinin, Sergei V.
2018.
Mapping mesoscopic phase evolution during E-beam induced transformations via deep learning of atomically resolved images.
npj Computational Materials,
Vol. 4,
Issue. 1,
Hill, Joanne
Mannodi-Kanakkithodi, Arun
Ramprasad, Ramamurthy
and
Meredig, Bryce
2018.
Computational Materials System Design.
p.
193.
Medford, Andrew J.
Kunz, M. Ross
Ewing, Sarah M.
Borders, Tammie
and
Fushimi, Rebecca
2018.
Extracting Knowledge from Data through Catalysis Informatics.
ACS Catalysis,
Vol. 8,
Issue. 8,
p.
7403.
Erkimbaev, Adilbek
Zitserman, Vladimir
Kobzev, Georgii
and
Kosinov, Andrey
2018.
Data Analytics and Management in Data Intensive Domains.
Vol. 822,
Issue. ,
p.
185.
Zakutayev, Andriy
Wunder, Nick
Schwarting, Marcus
Perkins, John D.
White, Robert
Munch, Kristin
Tumas, William
and
Phillips, Caleb
2018.
An open experimental database for exploring inorganic materials.
Scientific Data,
Vol. 5,
Issue. 1,
Warren, James A.
and
Ward, Charles H.
2018.
Evolution of a Materials Data Infrastructure.
JOM,
Vol. 70,
Issue. 9,
p.
1652.
Ward, Logan
Dunn, Alexander
Faghaninia, Alireza
Zimmermann, Nils E.R.
Bajaj, Saurabh
Wang, Qi
Montoya, Joseph
Chen, Jiming
Bystrom, Kyle
Dylla, Maxwell
Chard, Kyle
Asta, Mark
Persson, Kristin A.
Snyder, G. Jeffrey
Foster, Ian
and
Jain, Anubhav
2018.
Matminer: An open source toolkit for materials data mining.
Computational Materials Science,
Vol. 152,
Issue. ,
p.
60.
Blokhin, Evgeny
and
Villars, Pierre
2018.
Handbook of Materials Modeling.
p.
1.
Belviso, Florian
Claerbout, Victor E. P.
Comas-Vives, Aleix
Dalal, Naresh S.
Fan, Feng-Ren
Filippetti, Alessio
Fiorentini, Vincenzo
Foppa, Lucas
Franchini, Cesare
Geisler, Benjamin
Ghiringhelli, Luca M.
Groß, Axel
Hu, Shunbo
Íñiguez, Jorge
Kauwe, Steven Kaai
Musfeldt, Janice L.
Nicolini, Paolo
Pentcheva, Rossitza
Polcar, Tomas
Ren, Wei
Ricci, Fabio
Ricci, Francesco
Sen, Huseyin Sener
Skelton, Jonathan Michael
Sparks, Taylor D.
Stroppa, Alessandro
Urru, Andrea
Vandichel, Matthias
Vavassori, Paolo
Wu, Hua
Yang, Ke
Zhao, Hong Jian
Puggioni, Danilo
Cortese, Remedios
and
Cammarata, Antonio
2019.
Viewpoint: Atomic-Scale Design Protocols toward Energy, Electronic, Catalysis, and Sensing Applications.
Inorganic Chemistry,
Vol. 58,
Issue. 22,
p.
14939.
Blokhin, Evgeny
and
Villars, Pierre
2019.
Handbook of Materials Modeling.
p.
1.
De Guire, Eileen
Bartolo, Laura
Brindle, Ross
Devanathan, Ram
Dickey, Elizabeth C.
Fessler, Justin
French, Roger H.
Fotheringham, Ulrich
Harmer, Martin
Lara‐Curzio, Edgar
Lichtner, Sarah
Maillet, Emmanuel
Mauro, John
Mecklenborg, Mark
Meredig, Bryce
Rajan, Krishna
Rickman, Jeffrey
Sinnott, Susan
Spahr, Charlie
Suh, Changwon
Tandia, Adama
Ward, Logan
and
Weber, Rick
2019.
Data‐driven glass/ceramic science research: Insights from the glass and ceramic and data science/informatics communities.
Journal of the American Ceramic Society,
Vol. 102,
Issue. 11,
p.
6385.
Himanen, Lauri
Geurts, Amber
Foster, Adam Stuart
and
Rinke, Patrick
2019.
Data‐Driven Materials Science: Status, Challenges, and Perspectives.
Advanced Science,
Vol. 6,
Issue. 21,
Makeev, Maxim A
and
Rajput, Nav Nidhi
2019.
Computational screening of electrolyte materials: status quo and open problems.
Current Opinion in Chemical Engineering,
Vol. 23,
Issue. ,
p.
58.
Meredig, Bryce
2019.
Five High-Impact Research Areas in Machine Learning for Materials Science.
Chemistry of Materials,
Vol. 31,
Issue. 23,
p.
9579.