Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T19:38:41.560Z Has data issue: false hasContentIssue false

ZnO-Based Semiconductors as Building Blocks for Active Devices

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article provides a review of materials and devices of wide-bandgap oxide semiconductors based on ZnO, highlighting the nature of the chemical bond. The electronic structures of these materials are very different from those of conventional covalently bonded semiconductors, owing to the ionic nature of the chemical bonds. Therefore, one needs to design and optimize fabrication processes and structures of active devices containing such materials, taking into account the peculiar defect formation mechanisms. A variety of active devices that have clear advantages over the conventional ones have been demonstrated, for example, ultraviolet light-emitting diodes, quantum Hall devices, and transparent and flexible thin-film transistors with high electron mobility, paving the way for future applications. The reasons behind the successes identify future challenges in research on oxide semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kawasaki, M., Makino, T., Eds., Semicond. Sci. Technol. 20 (4) (2005).CrossRefGoogle Scholar
2.Look, D., Mat. Sci. Eng. B 80, 383 (2001).CrossRefGoogle Scholar
3.Özgür, Ü., Alivov, Ya.I., Liu, C., Teke, A., Reshchikov, M. A., Dogğan, S., Avrutin, V., Cho, S.-J., Morkoç, H., J. Appl. Phys., 98, 041301 (2005).CrossRefGoogle Scholar
4.Klingshirn, C., Phys. Stat. Sol. B 244, 3027 (2007).CrossRefGoogle Scholar
5.Tsukazaki, A., Ohtomo, A., Onuma, T., Ohtani, M., Makino, T., Sumiya, M., Ohtani, K., Chichibu, S.F., Fuke, S., Segawa, Y., Ohno, H., Koinuma, H., Kawasaki, M., Nat. Mater. 4, 42 (2005).CrossRefGoogle Scholar
6.Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., Hosono, H., Nature 432, 488 (2004).CrossRefGoogle Scholar
7.Tang, Z.K., Wang, G.K.L., Yu, P., Kawasaki, M., Ohtomo, A., Koinamu, H., Segawa, Y., Solid State Commun. 103, 459 (1997).CrossRefGoogle Scholar
8.Tang, Z.K., Wang, G.K.L., Yu, P., Kawasaki, M., Ohtomo, A., Koinamu, H., Segawa, Y., Appl. Phys. Lett. 72, 3270 (1998).CrossRefGoogle Scholar
9.Nishii, J., Hossain, F.M., Aita, T., Ohmaki, Y., Kishimoto, S., Fukumura, T., Ohno, Y., Ohno, H., Takagi, S., Saikusa, K., Ohkubo, I., Ohtomo, A., Matsukura, F., Koinuma, H., Kawasaki, M., Jpn. J. Appl. Phys. 42, L347 (2003).CrossRefGoogle Scholar
10.Fortunato, E.M.C., Adv. Mater. 17, 590 (2005).CrossRefGoogle Scholar
11.Tsukazaki, A., Ohtomo, A., Kawasaki, M., Appl. Phys. Lett. 88, 152106 (2006).CrossRefGoogle Scholar
12.Tsukazaki, A., Kubota, M., Ohtomo, A., Onuma, T., Ohtani, K., Ohno, H., Chichibu, S.F., Kawasaki, M., Jpn. J. Appl. Phys. 44, L643 (2005).CrossRefGoogle Scholar
13.Maeda, K., Sato, M., Niikura, I., Fukuda, T., Semicond. Sci. Technol. 20, S49 (2005).CrossRefGoogle Scholar
14.Chichibu, S.F., Uedono, A., Onuma, T., Haskell, B.A., Chakraborty, A., Koyama, T., Fini, P.T., Keller, S., Denbaas, S.P., Speck, J.S., Mishra, U.K., Nakamura, S., Yamaguchi, S., Kamiyama, S., Amano, H., Akasaka, I., Han, J., Sota, T., Nat. Mater. 5, 810 (2006).CrossRefGoogle Scholar
15.Hsieh, H.-H., Kamiya, T., Nomura, K., Hosono, H., Wu, C.-C., Appl. Phys. Lett. 92, 133503 (2008).CrossRefGoogle Scholar
16.Kimura, M., Nakanishi, T., Nomura, K., Kamiya, T., Hosono, H., Appl. Phys. Lett. 92, 133512 (2008).CrossRefGoogle Scholar
17.Hossain, F., Nishii, J., Takagi, S., Ohtomo, A., Fukumura, T., Fujioka, H., Ohno, H., Koinuma, H., Kawasaki, M., J. Appl. Phys. 94, 7768 (2003).CrossRefGoogle Scholar
18.Kamiya, T., Hosono, H., Int. J. Appl. Ceram. Technol. 2, 285 (2005).CrossRefGoogle Scholar
19.Tsukazaki, A., Ohtomo, A., Kita, T., Ohno, Y., Ohno, H., Kawasaki, M., Science 315, 1388 (2007).CrossRefGoogle Scholar
20.Tsukazaki, A., Yuji, H., Akasaka, S., Tamura, K., Nakahara, K., Tanabe, T., Takasu, H., Ohtomo, A., Kawasaki, M., Appl. Phys. Express 1, 055004 (2008).CrossRefGoogle Scholar
21.Hosono, H., J. Non-Cryst. Solids 203, 334 (1996).CrossRefGoogle Scholar
22.Sze, S.M., Physics of Semiconductor Devices (Wiley InterScience, New York, 1981).Google Scholar
23.Kawazoe, H., Yasukawa, M., Hyodo, H., Kurita, M., Yanagi, H., Hosono, H., Nature 389, 939 (1997).CrossRefGoogle Scholar
24.Hiramatsu, H., Ueda, K., Ohta, H., Hirano, M., Kikuchi, M., Yanagi, H., Kamiya, T., Hosono, H., Appl. Phys. Lett. 91, 012104 (2007).CrossRefGoogle Scholar
25.Mizoguchi, H., Hirano, M., Fujitsu, S., Takeuchi, T., Ueda, K., Hosono, H., Appl. Phys. Lett. 80, 1207 (2002).CrossRefGoogle Scholar
26.Kamiya, T., Narushima, S., Mizoguchi, H., Shimizu, K., Ueda, K., Ohta, H., Hirano, M., Hosono, H., Adv. Funct. Mater. 15, 968 (2005).CrossRefGoogle Scholar
27.Persson, C., Zunger, A., Phys. Rev. B 68, 073205 (2003).CrossRefGoogle Scholar