Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-23T15:41:16.025Z Has data issue: false hasContentIssue false

Ziegler-Natta catalysis: 50 years after the Nobel Prize

Published online by Cambridge University Press:  13 March 2013

Jerome P. Claverie
Affiliation:
Université du Québec à Montréal, Département de Chimie, Canada; [email protected]
Frank Schaper
Affiliation:
Université de Montréal, Département de Chimie, Canada; [email protected]
Get access

Abstract

Fifty years after the Nobel Prize was awarded to Ziegler and Natta, the transition-metal catalyzed polymerization of olefins remains one of the most important reactions conducted on the industrial scale and the subject of industrial as well as academic research. This introductory article will provide a short historical review of the discovery of catalyzed olefin polymerization by Ziegler, Natta, and others and its development in the years following the Nobel Prize, as well as giving insight into Ziegler-Natta polymerization for the nonspecialist.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ziegler, K., “Consequences and Development of an Invention,” in Nobel Lectures, Chemistry 1963–1970 (Elsevier, Amsterdam, Netherlands, 1972).Google Scholar
2. Natta, G., “From the Stereospecific Polymerization to the Asymmetric Autocatalytic Synthesis of Macromolecules,” in Nobel Lectures, Chemistry 1963–1970 (Elsevier, Amsterdam, Netherlands, 1972).Google Scholar
3. Ziegler, K., Adv. Organomet. Chem. 6 1 (1968).Google Scholar
4. Cerruti, L., HYLE—Inter. J. Philos. Chem. 5, 3 (1999).Google Scholar
5. McMillan, F.M., The chain straighteners (MacMillan Press, London, UK, 1979).Google Scholar
6. Haenel, M.W., Jolly, P.W., Historical Landmarks of Chemistry: Karl Ziegler (http://www.kofo.mpg.de/media/2/D1105213/0478051227/Festschrift_e.pdf, Mülheim, Germany, 2008).Google Scholar
7. Martin, H., Polymers, Patents, Profit (Wiley-VCH, Weinheim, Germany, 2007).Google Scholar
8. Fischer, K., Jonas, K., Misbach, P., Stabba, R., Wilke, G., Angew. Chem. Int. Ed. 12, 943 (1973).Google Scholar
9. Peacock, A.J., Ed., Handbook of Polyethylene (Marcel Dekker, New York, 2000).Google Scholar
10. Natta, G., Pino, P., Corradti, P., Danusso, F., Mantica, E., Mazzanti, G. Moraglio, G., J. Am. Chem. Soc. 77, 1708 (1955).Google Scholar
11. Natta, G., Corradini, P., J. Polym. Sci. 20, 251 (1956).Google Scholar
12. Pasquini, N., Ed., Polypropylene Handbook (Carl Hanser Verlag, Munich, Germany, 2005).Google Scholar
13. White, J.L., Choi, D.D., Eds., Polyolefins, Processing, Structure, Development and Properties (Carl Hanser Verlag, Munich, Germany, 2005).Google Scholar
14. Scheirs, J., Kaminsky, W., Eds., Metallocene Based Polyolefins (Marcel Dekker, New York, 2000), and references cited therein.Google Scholar
15. Kaminsky, W., Macromol. Chem. Phys. 209, 459 (2008), and references cited therein.CrossRefGoogle Scholar
16. Brintzinger, H.H., Fischer, H.H., Mülhaupt, D., Rieger, B., Waymouth, R.M., Angew. Chem., Int. Ed. Engl. 34, 1143 (1995), and references cited therein.CrossRefGoogle Scholar
17. Resconi, L., Cavallo, L., Fait, A., Piemontesi, F., Chem. Rev. 100, 1253 (2000).Google Scholar
18. Ewen, J.A., J. Mol. Cat. A: Chem. 128, 103 (1998).Google Scholar
19. Razavi, A., Thewalt, U., Coord. Chem. Rev. 250, 155 (2006).CrossRefGoogle Scholar
20. Chum, P.S., Swogger, K.W., Prog. Polym. Sci. 33, 797 (2008).Google Scholar
21. Gibson, V.C., Science 312, 703 (2006).Google Scholar
22. Makio, H.. Terao, H., Iwashita, A., Fujita, T., Chem. Rev. 111, 2363 (2011).Google Scholar
23. Gibson, V.C., Spitzmesser, S.K., Chem. Rev. 103, 283 (2003).CrossRefGoogle Scholar
24. Coates, G.W., Hustad, P.D., Reinartz, S., Angew. Chem. Int. Ed. 41, 2236 (2002).Google Scholar
25. Busico, V., Talarico, G., Cipullo, R., Macromolec. Symp. 226, 1 (2005).Google Scholar
26. Ittel, S.D., Johnson, L.K., Brookhart, M., Chem. Rev. 100, 1169 (2000).Google Scholar
27. Boffa, L.S., Novak, B.M., Chem. Rev. 100, 1479 (2000).CrossRefGoogle Scholar
28. Nakamura, A., Ito, S., Nozaki, K., Chem. Rev. 109, 5215 (2009).CrossRefGoogle Scholar
29. Osakada, K., Takeuchi, D., Adv. Polym. Sci. 171, 137 (2004).Google Scholar
30. Labinger, J.A., Bercaw, J.E., Nature 417, 507 (2002).Google Scholar
31. Coates, G.C., Grubbs, R.H., Acc. Chem. Res. 29, 85 (1996).Google Scholar
32. Woo, T.K., Margl, P.M., Deng, L., Cavallo, L., Ziegler, T., Catalysis Today 50, 479 (1999).Google Scholar
33. Beck, W., Sünkel, K., Chem. Rev. 88, 1405 (1988).CrossRefGoogle Scholar
34. Hurtgen, M., Detrembleur, C., Jerome, C., Debuigne, A., Polym. Rev. 51, 88 (2011).CrossRefGoogle Scholar
35. Vidal, V., Théolier, A., Thivolle-Cazat, J., Basset, J.M., Science 276, 99 (1997).Google Scholar