Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T01:09:41.588Z Has data issue: false hasContentIssue false

Taking nanotechnology to new heights: The potential impact on future aerospace vehicles

Published online by Cambridge University Press:  08 October 2015

Michael A. Meador*
Affiliation:
National Nanotechnology Coordination Office, USA; [email protected]
Get access

Abstract

The ability to understand and control matter at the nanoscale has enabled the development of revolutionary new materials and devices. While nanotechnology is rapidly becoming pervasive in applications such as consumer electronics, health care, and cosmetics, there are only a limited number of examples in which nanotechnology has found its way into aerospace applications. This article discusses the potential of nanotechnology to impact future aerospace missions and vehicles, as well as the technical barriers to its wider use in aerospace.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rawal, S., Brantely, J., Karabudak, N., Proc. 6th Conf. Recent Adv. Space Technol. (RAST) 13 (2013).Google Scholar
Jones, S.M., J. Solgel Sci. Technol. 40 (213), 351 (2006).CrossRefGoogle Scholar
Tsou, P., J. Noncryst. Solids 186, 415 (1995).CrossRefGoogle Scholar
Li, J., Lu, Y.,ECS Trans. 19 (6), 7 (2009).CrossRefGoogle Scholar
NASA Jet Propulsion Laboratory, http://enose.jpl.nasa.gov.Google Scholar
Alizadeh, A., Bahadur, V., Kulkarni, A., Yamada, M., Ruud, J.A., MRS Bull. 38 (5), 407 (2013).CrossRefGoogle Scholar
Spitalsky, Z., Tasis, D., Papagelis, K., Galiotsis, C., Prog. Polym. Sci. 35 (3), 357 (2010).CrossRefGoogle Scholar
Miller, S.G., Micham, L., Copa, C.C., Criss, J.M. Jr., Mintz, E.A., Proc. Int. SAMPE Tech. Conf. (2011).Google Scholar
Liu, Y., Kumar, S., ACS Appl. Mater. Interfaces 6, 6069 (2014).CrossRefGoogle Scholar
Zhang, M., Atkinson, K.R., Baughman, R.H., Science 306, 1358 (2004).CrossRefGoogle Scholar
Koziol, K., Vilatela, J., Moisala, A., Motta, M., Cunniff, P., Sennett, M., Windle, A., Science 318, 1892 (2007).CrossRefGoogle Scholar
Behabtu, N., Young, C.C., Tsentalovitch, D.E., Kleinerman, O., Wang, X., Ma, A.W.K., Bengio, E.A., ter Waarbeek, R.F., de Jong, J., Hoogerwerf, R.E., Fairchild, S.B., Ferguson, J.B., Muruyama, B., Kono, J., Talmon, Y., Cohen, Y., Otto, M.J., Pasquali, M., Science 339, 182 (2013).CrossRefGoogle Scholar
Jiang, C., Saha, A., Young, C.C., Hashim, D.P., Ramirez, C.E., Ajayan, P.M., Pasquali, M., Marti, A.A., ACS Nano 8, 9107 (2014).CrossRefGoogle Scholar
Yu, M.-F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S., Science 287, 637 (2000).CrossRefGoogle Scholar
Realizing the Promise of Carbon Nanotubes: Challenges, Opportunities and the Pathway to Commercialization—Technical Interchange Proceedings, September 15, 2014 (National Nanotechnology Initiative, Arlington, VA, 2014); available at http://www.nano.gov/sites/default/files/pub_resource/2014_nni_cnt_tech_meeting_report.pdf.Google Scholar
Beese, A.M., Wei, X., Sarkar, S., Ramachandramoorthy, R., Roenbeck, M.R., Moravsky, A., Ford, M., Yavari, F., Keane, D.T., Loutfy, R.O., Nguyen, S.T., Espinosa, H.D., ACS Nano 8, 11454 (2014).CrossRefGoogle Scholar
Șahin, K., Fasanella, N.A., Chasiotis, I., Lyons, K.M., Newcomb, B.A., Kamath, M.G., Chae, H.G., Kumar, S., Carbon 77, 442 (2014).CrossRefGoogle Scholar
Jarosz, P., Schauerman, C., Alvarenga, J., Moses, B., Mastrangelo, T., Raffaelle, R., Ridgley, R., Landi, B., Nanoscale 3, 4542 (2011).CrossRefGoogle Scholar
Wang, X., Behabtu, N., Young, C.C., Tsentalovich, D.E., Pasquali, M., Kono, J., Adv. Funct. Mater. 24, 3241 (2014).CrossRefGoogle Scholar
Randal, J.P., Meador, M.A.B., Jana, S.C., ACS Appl. Mater. Interfaces 3, 613 (2011).CrossRefGoogle Scholar
Meador, M.A.B., Malow, E.J., Silva, R., Wright, S., Quade, D., Vivod, S.L., Guo, H., Cakmak, M., ACS Appl. Mater. Interfaces 4, 536 (2012).CrossRefGoogle Scholar
Williams, J.C., Meador, M.A.B., McCorkle, L., Meuller, C., Wilmoth, N., Chem. Mater. 26, 4163 (2014).CrossRefGoogle Scholar
DelCorso, J.A., Cheatwood, F.M., Bruce, W.E., Hughes, S.J., Calomino, A.M., Proc. of the 21st AIAA Aerodynamic Decelerator Systems Conf. 2510 Dublin, Ireland, (2011).Google Scholar
Meador, M.A.B., Wright, S., Sandberg, A., Nguyen, B.N., VanKeuls, F.W., Mueller, C.H., Rodriguez-Solis, R., Miranda, F.A., ACS Appl. Mater. Interfaces 4, 6346 (2012).CrossRefGoogle Scholar
Kim, W.-G., Nair, S., Chem. Eng. Sci. 104, 908 (2013).CrossRefGoogle Scholar
Jackson, E.A., Hillmyer, M.A., ACS Nano 4, 3548 (2010).CrossRefGoogle Scholar
Yao, X., Guo, L., Chen, X., Huang, J., Steinhart, M., Wang, Y., ACS Appl. Mater. Interfaces 7, 6974 (2015).CrossRefGoogle Scholar
Jasuja, H., Peterson, G.W., Decoste, J.B., Browne, M.A., Walton, K.S., Chem. Eng. Sci. 124, 118 (2015).CrossRefGoogle Scholar
Venna, S.R., Carreon, M.A., Chem. Eng. Sci. 124, 3 (2015).CrossRefGoogle Scholar
Nishimoto, S., Bushan, B., RSC Adv. 3, 671 (2013).CrossRefGoogle Scholar
Schaaf, P., Gunschmann, S., Hopfeld, M., Wilden, J., Drescher, V., Boirshcel, C., Ronning, C., Surf. Coat. Technol. 205, 1584 (2010).CrossRefGoogle Scholar
Gao, Y., Gereige, I., El Labban, A., Cha, D., Isimjan, T.T., Beaujuge, P.M., ACS Appl. Mater. Interfaces 6, 2219 (2014).CrossRefGoogle Scholar
Chang, C.-H., Dominguez-Caballero, J.A., Choi, H.J., Barbastathis, G., Opt. Lett. 36, 2354 (2011).CrossRefGoogle Scholar
Le, K., IEEE J. Photovoltaics 4, 1566 (2014).CrossRefGoogle Scholar
Pudasaini, P.P., Ruiz-Zepeda, F., Sharma, M., Elam, D., Ponce, A., Ayon, A.A., ACS Appl. Mater. Interfaces 5, 9620 (2013).CrossRefGoogle Scholar
Yang, Z.-P., Hsieh, M.-L., Bur, J.A., Ci, L., Hanssen, L.M., Wilthan, B., Ajayan, P.M., Lin, S.-Y., Appl. Opt. 50, 1850 (2011).CrossRefGoogle Scholar
Hagopian, J.G., Getty, S.A., Quijada, M., Tveekrem, J., Shiri, R., Roman, P., Butler, J., Georgiev, G., Livas, J., Hunt, C., Maldonado, A., Talapatra, S., Zhang, X., Papadakis, S.J., Monica, A.H., Deglau, D., Proc. SPIE 7761, 77610F (2010).CrossRefGoogle Scholar
Diegel, O., in Comprehensive Materials Processing – Volume 10: Advances in Additive Manufacturing and Tooling, Hashmi, S., Ed. (Elsevier, Philadelphia, 2014), pp. 318.CrossRefGoogle Scholar
Haynes, J., Proc. Int. Astronautical Conf. 9, 6120 (2014).Google Scholar
Johnston, M.M., Werkheiser, M.J., Snyder, M.P., Edmunson, J.E., Proc. AIAA SPACE 2014 Conf. Exhib. (San Diego, 2014).Google Scholar
Beaulieu, M.R., Baral, J.K., Hendricks, N.R., Tan, Y.Y., Briseno, A.L., Watkins, J.J., ACS Appl. Mater. Interfaces 5, 13096 (2013).CrossRefGoogle Scholar
Zhu, C., Han, Y-J., Duoss, E.B., Golobic, A.M., Kuntz, J.D., Spadaccini, C.M., Worsley, M.A., Nat. Commun. 6, 7962 (2015).Google Scholar
Lee, J., Kwon, H., Seo, J., Shin, S., Koo, J.H., Pang, C., Son, A., Kim, J.H., Jang, Y.H., Kim, D.E., Lee, T., Adv. Mater. 27, 2433 (2015).CrossRefGoogle Scholar
Meza, L., Greer, J.R.. J. Mater. Sci. 49, 2496 (2014).CrossRefGoogle Scholar