Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T19:34:07.819Z Has data issue: false hasContentIssue false

The Symbiosis of Light and Matter: Laser-Engineered Materials for Photo-Functionality

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Current technology trends imply that further miniaturization and integration of systems are anticipated, and one approach to realizing the next generation of systems integration is the development of materials that are protean, or capable of taking on various properties; in essence, the materials properties can be selectively altered via laser excitation. The objective is that a common substrate material can be used for multiple functions. Laser direct-write material processing, because of its maskless patterning flexibility, is inherently suitable for producing localized changes in materials properties and thereby fabricating linked, integrated devices on a common substrate. The enabling of this new form of materials processing requires a light-activated protean material along with a scheme for the dynamic regulation of the laser energy for optimum laser processing on the scale of the laser spot size and for patterning speeds on the order of meters per second. The “protean material” concept and a high-fidelity laser amplitude-modulation scheme are the focus of this article.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ready, J.F. and Farson, D.F., eds., LIA Handbook of Laser Material Processing (Laser Institute of America, Magnolia Publishing Inc., Orlando, FL, 2001).Google Scholar
2.Ikuta, K. and Hirowatari, K., Proc. IEEE MEMS'93 (IEEE Press, New York, 1993) p. 42.Google Scholar
3.Jacobs, P.F., Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography (Society of Manufacturing Engineers Publishers, Dearborn, MI, 1992).Google Scholar
4.Cumpston, B.H., Ehrlich, J.E., Erskine, L.L., Heikal, A.A., Hu, Z.-Y., Lee, I.-Y.S., Levin, M.D., Marder, S.R., McCord, D.J., Perry, J.W., Röckel, H., Rumi, M., and Wu, X.-L., in Electrical, Optical and Magnetic Properties of Organic Solid-State Materials IV, edited by J.R. Reynolds, A. K-Y. Jen, M.F. Rubner, L.Y. Chiang, and L.R. Dalton, Materials Research Society Symp. Proc. 488 (1998) p. 217.Google Scholar
5.Boyd, I.W. in Laser Microfabrication: Thin Film Processes and Lithography, edited by Ehrlich, D.J. and Tsao, J.Y. (Academic Press, San Diego, 1989) p. 539.CrossRefGoogle Scholar
6.Kruger, J. and Kautek, W., Appl. Surf. Sci. 96–98 (1996) p. 430.CrossRefGoogle Scholar
7.Pronko, P.P., Dutta, S.K., Squier, J., Rudd, J.V., Du, D., and Mourou, G., Opt. Commun. 114 (1995) p. 106.CrossRefGoogle Scholar
8.Bäuerle, D., Laser Processing and Chemistry, 3rd ed. (Springer, Berlin, 2000).CrossRefGoogle Scholar
9.Bunkin, N.F. and Lobeyev, A.V., Colloids Surf., A 129–130 (1997) p. 33.CrossRefGoogle Scholar
10.Starbova, K., Mankov, V., Starbov, N., Popov, D., Nihtianova, D., Kolev, K., and Laude, L.D., Appl. Surf. Sci. 173 (2001) p. 177.CrossRefGoogle Scholar
11.Bonse, J., Wiggins, S.M., Solis, J., and Lippert, T., Appl. Surf. Sci. 247 (2005) p. 440.CrossRefGoogle Scholar
12.Vacik, J., Naramoto, H., Kitazawa, S.-I., Yamamoto, S., and Juha, L., J. Phys. Chem. Solids 66 (2005) p. 581.CrossRefGoogle Scholar
13.Yu, J.J. and Lu, Y.F., Appl. Surf. Sci. 148 (1999) p. 248.CrossRefGoogle Scholar
14.Bi, L., Wang, H., Shen, Y., Wang, E., and Dong, S., Electrochem. Commun. 5 (2003) p. 913.CrossRefGoogle Scholar
15.Du, D., He, Y.F., Sui, B., Xiong, L.J., and Zhang, H., J. Mater. Process. Technol. 161 (2005) p. 456.CrossRefGoogle Scholar
16.Ayers, J.D., Thin Solid Films 84 (1981) p. 323.CrossRefGoogle Scholar
17.Ritsko, J.J. in Laser Microfabrication: Thin Film Processes and Lithography, edited by Ehrlich, D.J. and Tsao, J.Y. (Academic Press, San Diego, 1989) p. 333.CrossRefGoogle Scholar
18.Brueck, S.R.J., Zaidi, S.H., Chen, X., and Zhang, Z., Microelectron. Eng. 41–42 (1998) p. 145.CrossRefGoogle Scholar
19.Liu, Y.S. in Laser Microfabrication: Thin Film Processes and Lithography, edited by Ehrlich, D.J. and Tsao, J.Y. (Academic Press, San Diego, 1989) p. 3.CrossRefGoogle Scholar
20.Schultze, V. and Wagner, M., Appl. Surf. Sci. 52 (1991) p. 303.CrossRefGoogle Scholar
21.Chrisey, D.B., Piqué, A., Fitz-Gerald, J., Auyeung, R.C.Y., McGill, R.A., Wu, H.D., and Duignan, M., Appl. Surf. Sci. 154–155 (2000) p. 593.CrossRefGoogle Scholar
22.Chrisey, D.B., Piqué, A., Modi, R., Wu, H.D., Auyeung, R.C.Y., and Young, H.D., Appl. Surf. Sci. 168 (2000) p. 345.CrossRefGoogle Scholar
23.Piqué, A., Auyeung, R.C.Y., Stepnowski, J.L., Weir, D.W., Arnold, C.B., McGill, R.A., and Chrisey, D.B., Surf. Coat. Technol. 163–164 (2003) p. 293.CrossRefGoogle Scholar
24.Jackson, R.L., Baum, T.H., Kodas, T.T., Ehrlich, D.J., and Comita, P.B., in Laser Microfabrication: Thin Film Processes and Lithography, edited by Tsao, J.Y. and Ehrlich, D.J. (Academic Press, San Diego, 1989) p. 385.CrossRefGoogle Scholar
25.Hansen, W.W., Janson, S.W., and Helvajian, H., in Laser Applications in Microelectronic and Optoelectronic Manufacturing II (SPIE, Bellingham, WA, 1997) p. 104.CrossRefGoogle Scholar
26.Livingston, F.E., Adams, P.M., and Helvajian, H., Proc. SPIE 5662 (2004) p. 44.CrossRefGoogle Scholar
27.Livingston, F.E., Hansen, W.W., Huang, A., and Helvajian, H., Proc. SPIE 4637 (2002) p. 404.CrossRefGoogle Scholar
28.Butler, J.T., Bright, V.M., and Comtois, J.H., Sens. Actuators, A: Physical 70 (1998) p. 15.CrossRefGoogle Scholar
29.Gomez-Reino, C., Linares, J., and Acosta, E., Opt. Commun. 63 (1987) p. 1.CrossRefGoogle Scholar
30.Kuper, S. and Stuke, M., Microelectron. Eng. 9 (1989) p. 475.CrossRefGoogle Scholar
31.Itoh, N. and Stoneham, A.M., Materials Modification by Electronic Excitation (Cambridge University Press, Cambridge, UK, 2001).Google Scholar
32.Sokolowski-Tinten, K., von Hoegen, M. Horn, von der Linde, D., Cavalleri, A., Siders, C.W., Brown, F.L.H., Leitner, D.M., Toth, C.S., Squier, J.A., Barty, C.P.J., Wilson, K.R., and Kammler, M., Science 286 (1999) p. 1340.Google Scholar
33.Ristoscu, C., Socol, G., Ghica, C., Mihailescu, I.N., Gray, D., Klini, A., Manousaki, A., Anglos, D., and Fotakis, C., Appl. Surf. Sci. 252 (2006) p. 4857.CrossRefGoogle Scholar
34.Livingston, F.E. and Helvajian, H., in Proc. 6th Int. Symp. Laser Precision Microfabrication, LPM2005 (JLPS Press, Osaka, 2005) p. 329.Google Scholar
35.Livingston, F.E., Steffeney, L.F., and Helvajian, H., Appl. Surf. Sci. (2006) in press.Google Scholar
36.Kim, H.S., Sohn, B.H., Lee, W., Lee, J.K., Choi, S.J., and Kwon, S.J., Thin Solid Films 419 (2002) p. 173.CrossRefGoogle Scholar
37.Zhang, Y., Wada, T., Wang, L., and Sasabe, H., Tetrahedron Lett. 38 (1997) p. 1785.CrossRefGoogle Scholar
38.Kolobov, A.V., ed., Photo-Induced Metastability in Amorphous Semiconductors (Wiley-VCH, Weinheim, 2003).CrossRefGoogle Scholar
39.Hirao, K., Mitsuyu, T., Si, J., and Qiu, J., Active Glass for Photonic Devices: Photoinduced Structures and Their Applications (Springer, Berlin, 2001).CrossRefGoogle Scholar
40.Berezhnoi, A., Glass-Ceramics and Photo-Sitalls (Plenum Press, New York, 1970).Google Scholar
41.Holand, W. and Beall, G.H., Glass-Ceramic Technology (American Ceramic Society, Westerville, OH, 2002).Google Scholar
42.Livingston, F.E. and Helvajian, H., J. Photochem. Photobiol., A (2006) p. 310.Google Scholar
43.Livingston, F.E. and Helvajian, H., in Photon-Based NanoScience and NanoBiology, edited by Dubowski, J. and Tanev, S. (Springer, New York, 2006) p. 225.CrossRefGoogle Scholar
44.Livingston, F.E., Steffeney, L.F., and Helvajian, H., Aerospace Tech. Report ATR-2006 (9364)-2 (2006).Google Scholar
45.Stookey, S.D., Ind. Eng. Chem. 45 (1953) p. 115.CrossRefGoogle Scholar
46.Livingston, F.E. and Helvajian, H., Proc. SPIE 4830 (2003) p. 189.CrossRefGoogle Scholar