Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T08:19:20.092Z Has data issue: false hasContentIssue false

Recent progress with multicompartmental nanoparticles

Published online by Cambridge University Press:  13 March 2014

Sahar Rahmani
Affiliation:
Macromolecular Science and Engineering, University of Michigan; [email protected]
Joerg Lahann
Affiliation:
University of Michigan and the Karlsruhe Institute of Technology; [email protected]
Get access

Abstract

This article highlights recent trends and challenges in the area of multicompartmental nanoparticles and focuses on the use of electrohydrodynamic co-jetting for preparing multicompartmental particles, fibers, and cylinders. There are many excellent reviews that have focused on various methods for the fabrication of anisotropic multifunctional particles and fibers and their respective advantages and disadvantages. In this article, we highlight recent developments in the electrohydrodynamic co-jetting approach used for the fabrication of nano- and microparticles and fibers with multifunctional characteristics. A particular focus is given to the use of this technology to control particle size and shape.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jiang, S., Granick, S., Janus Particle Synthesis, Self-Assembly, and Applications (RSC Publishing, London, 2012).Google Scholar
Grzelczak, M., Vermant, J., Furst, E.M., Liz-Marzán, L.M., ACS Nano 4, 3591 (2010).Google Scholar
Glotzer, S.C., Solomon, M.J., Kotov, N.A., AIChE J. 50, 2978 (2004).Google Scholar
Park, T.H., Lahann, J., in Janus Particle Synthesis, Self-Assembly, and Applications, Jiang, S., Granick, S., Eds. (RSC Publishing, London, 2012).Google Scholar
Glotzer, S.C., Solomon, M.J., Nat. Mater. 6, 557 (2007).Google Scholar
Yang, S.M., Kim, S.H., Lim, J.M., Yi, G.R., J. Mater. Chem. 18, 2177 (2008).Google Scholar
Walther, A., Muller, A.H.E., Soft Matter 4, 663 (2008).Google Scholar
Mitragotri, S., Lahann, J., Nat. Mater. 8, 15 (2009).CrossRefGoogle Scholar
Dendukuri, D., Doyle, P.S., Adv. Mater. 21, 4071 (2009).Google Scholar
Yoon, J., Lee, K.J., Lahann, J., J. Mater. Chem. 21, 8502 (2011).Google Scholar
Lee, K.J., Yoon, J., Lahann, J., Curr. Opin. Colloid Interface Sci. 16, 195 (2011).Google Scholar
Lahann, J., Small 7, 1149 (2011).Google Scholar
Sacanna, S., Irvine, W.T.M., Chaikin, P.M., Pine, D.J., Nature 464, 575 (2010).Google Scholar
Chen, Q., Whitmer, J.K., Jiang, S., Bae, S.C., Luijten, E., Granick, S., Science 331, 199 (2011).Google Scholar
Chen, Q., Bae, S.C., Granick, S., Nature 469, 381 (2011).Google Scholar
Pregibon, D.C., Toner, M., Doyle, P.S., Science 315, 1393 (2007).Google Scholar
Sengupta, S., Eavarone, D., Capila, I., Zhao, G., Watson, N., Kiziltepe, T., Sasisekharan, R., Nature 436, 568 (2005).Google Scholar
Yoshida, M., Roh, K.-H., Mandal, S., Bhaskar, S., Lim, D.W., Nandivada, H., Deng, X.P., Lahann, J., Adv. Mater. 21, 4920 (2009).Google Scholar
Kim, J., Chung, S.E., Choi, S.-E., Lee, H., Kim, J., Kwon, S., Nat. Mater. 10, 747 (2011).Google Scholar
Higuchi, T., Tajima, A., Motoyoshi, K., Yabu, H., Shimomura, M., Angew. Chem. Int. Ed. 47, 8044 (2008).Google Scholar
Yoon, J., Kota, A., Bhaskar, S., Tuteja, A., Lahann, J., ACS Appl. Mater. Interfaces 5 (21), 11281 (2013).CrossRefGoogle Scholar
Rahmani, S., Park, T.-H., Dishman, A., Lahann, J., J. Control. Release 172, 239 (2013).Google Scholar
Eyster, T., Park, T.H., Misra, A., Lahann, J., Small (2013), doi:10.1002/sm11.201201921.Google Scholar
Misra, A.C., Bhaskar, S., Lahann, J., Adv. Mater. 24, 3850 (2012).Google Scholar
Walther, A., Andras, X., Drechsler, M., Abetz, V., Mueller, A.H.E., J. Am. Chem. Soc. 129, 6187 (2007).Google Scholar
Kim, J.-W., Larsen, R.J., Weitz, D.A., J. Am. Chem. Soc. 128, 14374 (2006).Google Scholar
Kraft, D.J., Hilhorst, J., Heinen, M.A.P., Hoogenraad, M.J., Luigjes, B., Kegel, W.K., J. Phys. Chem. B 115, 7175 (2011).Google Scholar
Rolland, J.P., Maynor, B.W., Euliss, L.E., Exner, A.E., Denison, G.M., DeSimone, J.M., J. Am. Chem. Soc. 127, 10096 (2005).Google Scholar
Badaire, S., Cottin-Bizonne, C., Woody, J.W., Yang, A., Stroock, A.D., J. Am. Chem. Soc. 129, 40 (2006).Google Scholar
Merkel, T.J., Herlihy, K.P., Nunes, J., Orgel, R.M., Rolland, J.P., DeSimone, J.M., Langmuir 26, 13086 (2009).CrossRefGoogle Scholar
Nisisako, T., Torii, T., Takahashi, T., Takizawa, Y., Adv. Mater. 18, 1152 (2006).Google Scholar
Chen, C.-H., Abate, A.R., Lee, D., Terentjev, E.M., Weitz, D.A., Adv. Mater. 21, 3201 (2009).Google Scholar
Bong, K.W., Bong, K.T., Pregibon, D.C., Doyle, P.S., Angew. Chem. Int. Ed. Engl. 49, 87 (2010).CrossRefGoogle Scholar
Greiner, A., Wendorff, J.H., Angew. Chem. Int. Ed. Engl. 46, 5670 (2007).Google Scholar
Perro, A., Reculusa, S., Ravaine, S., Bourgeat-Lami, E., Duguet, E.. J. Mater. Chem. 15, 3745 (2005).CrossRefGoogle Scholar
Wurm, F., Kilbinger, A.F.M., Angew. Chem. Int. Ed. Engl. 48, 8412 (2009).Google Scholar
Jiang, S., Chen, Q., Tripathy, M., Luijten, E., Schweizer, K.S., Granick, S., Adv. Mater. 22, 1060 (2010).Google Scholar
Pawar, B., Kretzschmar, I., Macromol. Rapid Commun. 31, 150 (2010).Google Scholar
Lattuada, M., Hatton, T.A., Nanotoday, 6, 286 (2011).Google Scholar
Du, J., O’Reilly, R.K., Chem. Soc. Rev. 40, 2402 (2011).Google Scholar
Lv, W., Lee, K.J., Hwang, S., Park, T.-H., Zhang, F., Lahann, J., Part. Part. Syst. Char. (2013), doi:10.1002/ppsc.201300123.Google Scholar
Lv, W., Lee, K.J., Li, J., Park, T.-H., Hwang, S., Hart, A.J., Zhang, F., Lahann, J., Small 8 (20), 3116 (2012).Google Scholar
Gupta, P., Wilkes, L., Polymer 44, 6353 (2003).Google Scholar
Loscertales, I.G., Barrero, A., Guerrero, I., Cortijo, R., Marquez, M., Ganan-Calvo, A.M., Science 295, 1695 (2002).CrossRefGoogle Scholar
Larsen, G., Velarde-Ortiz, R., Minchow, K., Barrero, A., Loscertales, I.G., J. Am. Chem. Soc. 125, 1154 (2003).Google Scholar
Loscertales, I.G., Barrero, A., Marquez, M., Spretz, R., Velarde-Ortiz, R., Larsen, G., J. Am. Chem. Soc. 126, 5376 (2004).Google Scholar
Sun, Z., Zussman, E., Yarin, A.L., Wendorff, J.H., Greiner, A., Adv. Mater. 15, 1929 (2003).Google Scholar
Roh, K.-H., Martin, D.C., Lahann, J., Nat. Mater. 4, 759 (2005).Google Scholar
Roh, K.-H., Yoshida, M., Lahann, J., Langmuir 23, 5683 (2007).Google Scholar
Bhaskar, S., Roh, K.-H., Jiang, X.W., Baker, G.L., Lahann, J., Macromol. Rapid Commun. 29, 1655 (2008).Google Scholar
Mandal, S., Bhaskar, S., Lahann, J., Macromol. Rapid Commun. 30, 1638 (2009).Google Scholar
Bhaskar, S., Pollock, K.M., Yoshida, M., Lahann, J., Small 6, 404 (2010).Google Scholar
Roh, K.-H., Martin, D.C., Lahann, J., J. Am. Chem. Soc. 128, 6796 (2006).Google Scholar
Doshi, N., Zahr, A. S., Bhaskar, S., Lahann, J., Mitragotri, S., Proc. Natl. Acad. Sci. U.S.A. 106 (51), 21495 (2009).Google Scholar
Bhaskar, S., Lahann, J., J. Am. Chem. Soc. 131, 6650 (2009).Google Scholar
Gupta, P., Wilkes, G.L., Polymer 44, 6353 (2003).Google Scholar
Lee, K.J., Hwang, S., Yoon, J., Bhaskar, S., Park, T.-H., Lahann, J., Macromol. Rapid Commun. 32, 431 (2011).Google Scholar
Bhaskar, S., Gibson, C.T., Yoshida, M., Nandivada, H., Deng, X.P., Voelcker, N.H., Lahann, J., Small 7, 812 (2011).Google Scholar
Saha, S., Copic, D., Bhaskar, S., Clay, N., Donini, A., Hart, A.J., Lahann, J., Angew. Chem. Int. Ed. Engl. 51, 660 (2012).Google Scholar
Lee, K.J., Park, T.-H., Hwang, S., Yoon, J., Lahann, J., Langmuir 29 (20), 6181 (2013).Google Scholar
Bhaskar, S., Hitt, J., Chang, S.W.L., Lahann, J., Angew. Chem. Int. Ed. Engl. 48, 4589 (2009).Google Scholar
Lee, K.J., Yoon, J., Rahmani, S., Hwang, S., Bhaskar, S., Mitragotri, S., Lahann, J., Proc. Natl. Acad. Sci. U.S.A. 109, 16057 (2012).Google Scholar