Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T19:57:38.787Z Has data issue: false hasContentIssue false

Recent Developments in Bulk Thermoelectric Materials

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Good thermoelectric materials possess low thermal conductivity while maximizing electric carrier transport. This article looks at various classes of materials to understand their behavior and determine methods to modify or “tune” them to optimize their thermoelectric properties. Whether it is the use of “rattlers” in cage structures such as skutterudites, or mixed-lattice atoms such as the complex half-Heusler alloys, the ability to manipulate the thermal conductivity of a material is essential in optimizing its properties for thermoelectric applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nolas, G.S.Morelli, D.T. and Tritt, T.M.Annu. Rev. Mater. Sci. 29 (1999) p. 89 and references therein.Google Scholar
2.Uher, C. in Semiconductors and Semimetals, Vol. 69, edited by Tritt, T.M. (Academic Press, New York, 2000) p. 139 and references therein.Google Scholar
3.Sales, B.C. in Handbook of the Physics and Chemistry of Rare Earths, Vol. 33 (Elsevier Science, Amsterdam, 2002) p.1.Google Scholar
4.Fleurial, J.-P.Borshchevsky, A.Caillat, T.Morelli, D.T. and Meisner, G.P. in Proc. 15th Int. Conf. Thermoelectrics (IEEE, Piscataway, NJ, 1996) p.91.Google Scholar
5.Sales, B.C.Mandrus, D. and Williams, R.K.Science 272 (1996) p.1325.CrossRefGoogle Scholar
6.Nolas, G.S.Cohn, J.L.Slack, G.A. and Schujman, S.B.Appl. Phys. Lett. 73 (1998) p.176.CrossRefGoogle Scholar
7.Morelli, D.T.Meisner, G.P.Chen, B.Hu, S. and Uher, C.Phys. Rev B 56 (1997) p.7376.Google Scholar
8.Nolas, G.S.Kaeser, M.Littleton, R. IV, and Tritt, T.M.Appl. Phys. Lett. 77 (2000) p.1822.Google Scholar
9.Dyck, J.S.Chen, W.Uher, C.Chen, L.Tang, X. and Hirai, T.J. Appl. Phys. 91 (2002) p.3698.CrossRefGoogle Scholar
10.Tanga, X.Zhang, Q.Chen, L.Goto, T. and Hirai, T.J.Appl. Phys. 97 093712 (2005).Google Scholar
11.Puyet, M.Dauscher, A.Lenoir, B.Dehmas, M.Stiewe, C.Müller, E., and Hejtmanek, J.J.Appl. Phys. 97 083712 (2005).Google Scholar
12.Puyet, M.Lenoi, B.Dauscher, A.Dehmas, M.Stiewe, C. and Müller, E., J. Appl. Phys. 95 (2004) p.4852.CrossRefGoogle Scholar
13.Slack, G.A. and Tsoukala, V.G.J. Appl. Phys. 76 (1994) p.1665.Google Scholar
14.Nolas, G.S.Slack, G.A. and Schujman, S.B. in Semiconductors and Semimetals, Vol.69, edited by Tritt, T.M. (Academic Press, San Diego, 2001) p.255.Google Scholar
15.Blake, N.P.Latturner, S.Bryan, J.D.Stucky, G.D. and Metiu, H.J. Chem. Phys. 115 (2001) p.8060.Google Scholar
16.Kuznetsov, V.L.Kuznetsova, L.A.Kaliazin, A.E. and Rowe, D.M.J. Appl. Phys. 87 (2000) p.7871.Google Scholar
17.Nolas, G.S.Thermoelectrics Handbook: Macro- to Nano-Structured Materials, edited by Rowe, D.M. (CRC Press, Boca Raton, FL) in press.Google Scholar
18.Bentien, A.Pacheco, V.Paschen, S.Grin, Y. and Steglich, F.Phys. Rev. B 71 165206 (2005).CrossRefGoogle Scholar
19.Madsen, G.K.H.Schwarz, K.Blaha, P. and Singh, D.J.Phys. Rev. B 68 125212 (2003).CrossRefGoogle Scholar
20.Jeischko, W.Metall. Trans. A 1 (1970) p.3159.CrossRefGoogle Scholar
21.Poon, S.J. in Recent Trends in Thermoelectric Materials Research II, edited by Tritt, T.M. Semiconductors and Semimetals, Vol.70, Chap. 2, treatise editors, Willardson, R.K. and Weber, E.R. (Academic Press, New York, 2001) p.37.CrossRefGoogle Scholar
22.Tobola, J.Pierre, J.Kaprzyk, S.Skolozdra, R.V. and Kouacou, M.A.J.Phys. Condens. Matter 10 (1998) p.1013.CrossRefGoogle Scholar
23.Aliev, F.G.Brandt, N.B.Moschalkov, V.V.Kozyrkov, V.V.Scolozdra, R.V. and Belogorokhov, A.I.Phys. B: Condens. Matter 75 (1989) p.167.Google Scholar
24.Ogut, S. and Rabe, K.M.Phys. Rev. B 51 (1995) p.10443.Google Scholar
25.Pickett, W.E. and Moodera, J.S.Phys. Today 54 (2001) p.39.CrossRefGoogle Scholar
26.Uher, C.Yang, J.Hu, S.Morelli, D.T. and Meisner, G.P.Phys. Rev. B 59 (1999) p.8615.CrossRefGoogle Scholar
27.Hohl, H.Ramirez, A.P.Goldmann, C.Ernst, G.Wolfing, B. and Bucher, E.J. Phys. Con-dens. Matter 11 (1999) p.1697.Google Scholar
28.Sportouch, S.Larson, P.Bastea, M.Brazis, P.Ireland, J.Kannenwurf, C.R.Mahanti, S.D.Uher, C. and Kanatzidis, M.G. in Thermoelectric Materials 1998—The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by Tritt, T.M.Kanatzidis, M.G.Mahan, G.D. and Lyon, H.B. Jr (Mater. Res. Soc. Symp. Proc. 545, Warrendale, PA, 1999) p.421.Google Scholar
29.Bhattacharya, S.Pope, A.L.Littleton, R.T. IV, Tritt, T.M.Ponnambalam, V.Xia, Y. and Poon, S.J.Appl. Phys. Lett. 77 (2000) p.2476.CrossRefGoogle Scholar
30.Xia, Y.Bhattacharya, S.Ponnambalam, V.Pope, A.L.Poon, S.J. and Tritt, T.M.J. Appl. Phys. 88 (2000) p.1952.Google Scholar
31.Shen, Q.Chen, L.Goto, T.Hirai, T.Yang, J.Meisner, G.P. and Uher, C.Appl. Phys. Lett. 79 (2001) p.4165.CrossRefGoogle Scholar
32.Sakurada, S. and Shutoh, N.Appl. Phys. Lett. 6 (2005) p.2105.Google Scholar
33.Culp, S.R.Poon, S.J.Hickman, N.Tritt, T.M. and Blumm, J., Appl. Phys. Lett. 88 042106 (2006).CrossRefGoogle Scholar
34.Yang, Y.Meisner, G.P. and Chen, L.Appl. Phys. Lett.85 (2004) p.1140.CrossRefGoogle Scholar
35.Sharp, J.W.Poon, S.J. and Goldsmid, H.J.Phys. Status Solidi A 187 (2001) p.507.3.0.CO;2-M>CrossRefGoogle Scholar
36.Bhattacharya, S.Tritt, T.M.Xia, Y.Ponnambalam, V.Poon, S.J. and Thadhani, N.Appl. Phys. Lett. 81 (2002) p.43.CrossRefGoogle Scholar
37.Mayer, H.W.Mikhail, I. and Schubert, K.J.Less-Common Metals 59 (1978) p.43.CrossRefGoogle Scholar
38.Caillat, T.Fleurial, J.-P. and Borshchevsky, A.J. Phys. Chem. Solids 58 (1997) p.1119.CrossRefGoogle Scholar
39.Kuznetsov, V.L. and Rowe, D.M.J. Alloys Compd. 372 (2004) p.103.CrossRefGoogle Scholar
40.Ur, S.C.Kim, I.H. and Nash, P.Mater. Lett. 58 (2004) p.2132.Google Scholar
41.Ueno, K.Yamamoto, A.Noguchi, T.Inoue, T.Sodeoka, S.Takazawa, H.Lee, C.H. and Obara, H.J.Alloys Compd. 385 (2004) p.254.Google Scholar
42.Snyder, G.J.Christensen, M.Nishibori, E.Caillat, T. and Iversen, B.B.Nature Mater. 3 (2004) p.458.CrossRefGoogle Scholar
43.Tsutsui, M.Zhang, L.T.Ito, K. and Yamaguchi, M.Intermetallics 12 (2004) p.809.CrossRefGoogle Scholar
44.Cargnoni, F.Nishibori, E.Rabiller, P.Bertini, L.Snyder, G.J.Christensen, M. and Inversen, B.B.Chem. Eur. J. 20 (2004) p.3861.Google Scholar
45.Kim, S.G.Mazin, I.I. and Singh, D.J.Phys. Rev. B 57 (1998) p.6199.CrossRefGoogle Scholar
46.Nylen, J.Andersson, M.Lidin, S. and Haeussermann, U.J. Am. Chem. Soc. 126 (2004) p.16306.CrossRefGoogle Scholar
47.Nolas, G.S.Sharp, J. and Goldsmid, H.J.Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2001).CrossRefGoogle Scholar
48.Skrabeck, E. and Trimmer, D.S. in CRC Handbook of Thermoelectrics, edited by Rowe, D.M. (CRC Press, Boca Raton, FL, 1995) p.267.Google Scholar
49.Venkatasubramanian, R.Siivola, E.Colpitts, T. and O'Quinn, B., Nature 413 (2001) p.597.CrossRefGoogle Scholar
50.Harman, T.C.Taylor, P.J.Walsh, M.P. and LaForge, B.E.Science 297 (2002) p.2229.CrossRefGoogle Scholar
51.Hicks, L.D.Harman, T.C. and Dresselhaus, M.S.Appl. Phys. Lett. 63 (1993) p. 3230.Google Scholar
52.Chung, D.Y.Jobic, S.Hogan, T.Kannewurf, C.R.Brec, R.Rouxel, J. and Kanatzidis, M.G.J.Amer. Chem. Soc. 119 (1997) p.2505.Google Scholar
53.McCarthy, T.J.Ngeyi, S.P.Liao, J.H.DeGroot, D.C.Hogan, T.Kannewurf, C.R. and Kanatzidis, M.G.Chem. Mater. 5 (1993) p.331.CrossRefGoogle Scholar
54.Kyratsi, T.Dyck, J.S.Chen, W.Chung, D.Y.Uher, C.Paraskevopoulos, K.M. and Kanatzidis, M.G., J.Appl. Phys. 92 (2002) p.965.Google Scholar
55.Kanatzidis, M.G.McCarthy, T.J.Tanzer, T.A.Chen, L.Iordanidis, L.Hogan, T.Kannewurf, C.R.Uher, C. and Chen, B.Chem. Mater. 8 (1996) p.1465.CrossRefGoogle Scholar
56.Chung, D.Y.Hogan, T.Brazis, P.Rocci-Lane, M., Kannewurf, C.R.Bastea, M.Uher, C. and Kanatzidis, M.G.Science 287 (2000) p.1024.Google Scholar
57.Chung, D.Y.Hogan, T.P.Rocci-Lane, M., Brazis, P.Ireland, J.R.Kannewurf, C.R.Bastea, M.Uher, C. and Kanatzidis, M.G.J.Am. Chem. Soc. 126 (2004) p.6414.Google Scholar
58.Wolfing, B.Kloc, C.Teubner, J. and Bucher, E.Phys. Rev. Lett. 86 (2001) p.4350.CrossRefGoogle Scholar
59.Sharp, J.W.Sales, B.C. and Mandrus, D.G.Appl. Phys. Lett. 74 (1999) p.3794.CrossRefGoogle Scholar
60.Kurosaki, K.Kosuga, A.Muta, H.Uno, M. and Yamanaka, S.Appl. Phys. Lett. 87 061919 (2005).CrossRefGoogle Scholar
61.Hsu, K.F.Loo, S.Guo, F.Chen, W.Dyck, J.S.Uher, C.Hogan, T.Polychroniadis, E.K. and Kanatzidis, M.G.Science 303 (2004) p.818.CrossRefGoogle Scholar
62.Sportouch, S.Bastea, M.Brazis, P.Ireland, J., Kannewurf, C.R.Uher, C. and Kanatzidis, M.G. in Thermoelectric Materials 1998—The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by Tritt, T.M.Kanatzidis, M.G.Mahan, G.D. and Lyon, H.B. Jr (Mater. Res. Soc. Symp. Proc. 545, War-rendale, PA, 1999) p.123.Google Scholar
63.Quarez, E.Hsu, K.F.Pcionek, R.Frangis, N.Polychroniadis, E.K. and Kanatzidis, M.G.J.Amer. Chem. Soc. 127 (2005) p.9177.Google Scholar