Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T18:31:44.358Z Has data issue: false hasContentIssue false

Piezotronic materials and large-scale piezotronics array devices

Published online by Cambridge University Press:  10 December 2018

Weiguo Hu
Affiliation:
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, China; [email protected]
Kourosh Kalantar-Zadeh
Affiliation:
School of Chemical Engineering, University of New South Wales, Australia; [email protected]
Kapil Gupta
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Taiwan; [email protected]
Chuan-Pu Liu
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Taiwan; [email protected]
Get access

Abstract

Third-generation semiconductors, such as ZnO and GaN, exhibit strong piezoelectric polarization due to the lack of inversion symmetry. The piezotronic effect observed in these semiconductors was proposed for tuning carrier transport in electronic devices by utilizing the induced piezoelectric potential as a virtual gate. This novel concept allows effective interactions between micro-/nanoelectronic devices and external mechanical stimuli. Piezotronics provide a promising approach for designing future electronic devices beyond Moore’s Law with potential for developing smart sensors, environment monitoring systems, human–machine interaction elements, and other transducers. In this article, we review recent progress in piezotronics using one-dimensional materials, heterojunctions, and large-scale arrays. We provide guidance for future piezotronic devices based on these materials.

Type
Piezotronics and Piezo-Phototronics
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, X.D., Zhou, J., Song, J.H., Liu, J., Xu, N.S., Wang, Z.L., Nano Lett. 6, 2768 (2006).CrossRefGoogle Scholar
Wang, Z.L., Song, J., Science 312, 242 (2006).CrossRefGoogle Scholar
He, J.H., Hsin, C.L., Liu, J., Chen, L.J., Wang, Z.L., Adv. Mater. 19, 781 (2007).CrossRefGoogle Scholar
Wang, Z.L., Adv. Mater. 19, 889 (2007).CrossRefGoogle Scholar
Zhou, J., Gu, Y., Fei, P., Mai, W., Gao, Y., Yang, R., Bao, G., Wang, Z.L., Nano Lett. 8, 3035 (2008).CrossRefGoogle Scholar
Wang, Z.L., Adv. Mater. 24, 4632 (2012).CrossRefGoogle Scholar
Gao, Z.Y., Zhou, J., Gu, Y.D., Fei, P., Hao, Y., Bao, G., Wang, Z.L., J. Appl. Phys. 105, 113707 (2009).CrossRefGoogle Scholar
Wang, Z.L., Piezotronics and Piezo-Phototronics (Springer, Berlin, 2013).Google Scholar
Yu, R.M., Wu, W.Z., Ding, Y., Wang, Z.L., ACS Nano 7, 6403 (2013).CrossRefGoogle Scholar
Zhou, Y., Hinchet, R., Yang, Y., Ardila, G., Songmuang, R., Zhang, F., Zhang, Y., Han, W., Pradel, K., Montes, L., Mouis, M., Wang, Z.L., Adv. Mater. 25, 883 (2013).CrossRefGoogle Scholar
Ku, N.J., Huang, J.H., Wang, C.H., Fang, H.C., Liu, C.P., Nano Lett. 12, 562 (2012).CrossRefGoogle Scholar
Lin, Y.F., Song, J., Ding, Y., Liu, S.Y., Wang, Z.L., Appl. Phys. Lett. 92, 022105 (2008).CrossRefGoogle Scholar
Zhou, Y.S., Han, W., Rai, S.C., Zhang, Y., Ding, Y., Pan, C., Zhang, F., Zhou, W., Wang, Z.L., ACS Nano 6, 6478 (2012).CrossRefGoogle Scholar
Zhao, Z., Pu, X., Han, C., Du, C., Li, L., Jiang, C., Hu, W., Wang, Z.L., ACS Nano 9, 8578 (2015).CrossRefGoogle Scholar
Wang, C.H., Liao, W.S., Ku, N.J., Li, Y.C., Chen, Y.C., Tu, L.W., Liu, C.P., Small 10,4718 (2014).CrossRefGoogle Scholar
Wang, X., Yu, R., Jiang, C., Hu, W., Wu, W., Ding, Y., Peng, W., Li, S., Wang, Z.L., Adv. Mater. 28, 7234 (2016).CrossRefGoogle Scholar
Liu, T., Jiang, C., Huang, X., Du, C., Zhao, Z., Jing, L., Li, X., Han, S., Sun, J., Pu, X., Zhai, J., Hu, W., Nano Energy 39, 53 (2017).CrossRefGoogle Scholar
Jiang, C., Liu, T., Du, C., Huang, X., Liu, M., Zhao, Z., Li, L., Pu, X., Zhai, J., Hu, W., Lin Wang, Z., Nanotechnology 28, 455203 (2017).CrossRefGoogle Scholar
Kou, J., Zhang, Y., Liu, Y., Zhang, K., Liu, W., Zhai, J., Semicond. Sci. Technol. 32, 074001 (2017).CrossRefGoogle Scholar
Gao, S., Wang, Y., Wang, R., Wu, W., Semicond. Sci. Technol. 32, 104004 (2017).CrossRefGoogle Scholar
Wu, J.M., Chen, C.-Y., Zhang, Y., Chen, K.-H., Yang, Y., Hu, Y., He, J.-H., Wang, Z.L., ACS Nano 6, 4369 (2012).CrossRefGoogle Scholar
Wu, W., Wen, X., Wang, Z.L., Science 340, 952 (2013).CrossRefGoogle Scholar
Liu, S., Wang, L., Feng, X., Wang, Z., Xu, Q., Bai, S., Qin, Y., Wang, Z.L., Adv. Mater. 29, 1606346 (2017).CrossRefGoogle Scholar
Han, X., Du, W., Chen, M., Wang, X., Zhang, X., Li, X., Li, J., Peng, Z., Pan, C., Wang, Z.L., Adv. Mater. 29, 1701253 (2017).CrossRefGoogle Scholar
Wu, W.Z., Wei, Y.G., Wang, Z.L., Adv. Mater. 22, 4711 (2010).CrossRefGoogle Scholar
Wu, W., Wang, Z.L., Nano Lett. 11, 2779 (2011).CrossRefGoogle Scholar
Niu, S.M., Hu, Y.F., Wen, X.N., Zhou, Y.S., Zhang, F., Lin, L., Wang, S.H., Wang, Z.L., Adv. Mater. 25, 3701 (2013).CrossRefGoogle Scholar
Lao, C.S., Kuang, Q., Wang, Z.L., Park, C.M., Deng, Y., Appl. Phys. Lett. 90, 262107 (2007).CrossRefGoogle Scholar
Cao, X.-T., Cao, X., Guo, H., Li, T., Jie, Y., Wang, N., Wang, Z.L., ACS Nano 10, 8038 (2016).CrossRefGoogle Scholar
Wang, X., Peng, W., Pan, C., Wang, Z.L., Semicond. Sci. Technol. 32, 043005 (2017).CrossRefGoogle Scholar
Nie, J., Hu, G., Li, L., Zhang, Y., Nano Energy 46, 423 (2018).CrossRefGoogle Scholar
Gao, Z., Ding, Y., Lin, S., Hao, Y., Wang, Z.L., Phys. Status Solidi RRL 3, 260 (2009).CrossRefGoogle Scholar
Sekitani, T., Noguchi, Y., Hata, K., Fukushima, T., Aida, T., Someya, T., Science 321, 1468 (2008).CrossRefGoogle Scholar
Vosgueritchian, M., Lipomi, D.J., Bao, Z., Adv. Funct. Mater. 22, 421 (2012).CrossRefGoogle Scholar
Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H., Nature 457, 706 (2009).CrossRefGoogle Scholar
Rogers, J.A., Someya, T., Huang, Y., Science 327, 1603 (2010).CrossRefGoogle Scholar