Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T18:09:20.148Z Has data issue: false hasContentIssue false

Nucleation, Growth, and Microstructure of Nanocrystalline Diamond Films

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

It has been generally believed that hydrogen plays a central role in the various processes that have been developed over the years for the chemical vapor deposition (CVD) of diamond films. In particular it has been thought that atomic hydrogen is an absolutely essential ingredient of the vapor from which the films are grown. Typically in diamond CVD, gas mixtures consisting of l-vol% CH3 in 99-vol% H2 have been used in which atomic hydrogen is generated either by thermal decomposition or by collisional processes in a plasma. With a hydrocarbon precursor such as CH3, gas-phase hydrogen-abstraction reactions lead to the generation of the methyl radical CH3, which adsorbs on a carbon radical site also created by hydrogen abstraction from the hydrogen-terminated growing diamond surface. Additional hydrogen-abstraction reactions allow the carbon in the adsorbed methyl radical to form carbon-carbon bonds and thus be incorporated into the diamond lattice. Because graphite is thermodynamically more stable than diamond, the growth of metastable diamond has been thought to require the presence of atomic hydrogen, which has been said to stabilize the diamond lattice and to remove graphitic nuclei when they do form because of the preferential etching or regasification of graphite over diamond. This description of diamond-film growth from hydrocarbon–hydrogen mixtures is of course a very highly condensed version of the detailed experimental and theoretical work that has been carried out in the field over the years. However the predominant conclusion of most of that work is that, particularly in the absence of oxygen and perhaps halogens, atomic hydrogen plays a crucial and decisive role in diamond CVD.

Type
Diamond Films: Recent Developments
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Celii, F.G. and Butler, J.E., Annu. Rev. Phys. Chem. 42 (1991) p. 643.CrossRefGoogle Scholar
2.Angus, J.C. and Hayman, C.C., Science 241 (1988) p. 913.CrossRefGoogle Scholar
3.Spear, K.E. and Dismukfes, J.P., eds., Synthetic Diamond (John Wiley & Sons, New York, 1994).Google Scholar
4.Krätschmer, W., Lamb, L.D., Fostiropoulas, K., and Huffman, D.R., Nature 347 (1990) p. 354.CrossRefGoogle Scholar
5.Gruen, D.M., Liu, S., Krauss, A.R., Luo, J., and Pan, X., Appl. Phys. Lett. 64 (1994) p. 1502.CrossRefGoogle Scholar
6.Gruen, D.M., Liu, S., Krauss, A.R., and Pan, X., J. Appl. Phys. 75 (1994) p. 1758; D.M. Gruen, CD. Zuiker, and A.R. Krauss, in Proc. SPIE Fullercnes and Photonics II, edited by Z.H. Kafafi, vol. 2530 (1995).CrossRefGoogle Scholar
7.Busmann, H.G., Brauneck, U., David, H.W., Diekhoff, S., and Boseck, S., in Proc. XI Int. Wintershcool on Electronic Properties of Novel Materials (Society of Photo-Instrumentation Engineers, Kirchberg, Austria, February 1997).Google Scholar
8.Gruen, D.M., Krauss, A.R., Zhou, D., McCauley, T.G., Corrigan, T.D., Chang, R.P.H., and Swain, G.M., Electrochem. Soc. Proc. 97–25 (1997) p. 325.Google Scholar
9.Csencsits, R., Gruen, D.M., Krauss, A.R., and Zuiker, C., in Polycrystalline Thin Films — Structure, Texture, Properties, and Applications II, edited by Frost, H.J., Parker, M.A., Ross, C.A., and Holm, E.A. (Mater. Res. Soc. Symp. Proc. 403, Pittsburgh, 1996) p. 291.Google Scholar
10.Luo, J.S., Gruen, D.M., and Krauss, A.R., Electrochem. Soc. Proc. 95–10 (1995) p. 43.Google Scholar
11.Gruen, D.M., Krauss, A.R., Zuiker, C.D., Csencsits, R., Terminello, L.J., Carlisle, J.A., Jimenez, I., Sutherland, D.G.J., Shuh, D.K., Thong, W., and Himpsel, F.J., Appl. Phys. Lett. 68 (12) (1996) p. 1640.CrossRefGoogle Scholar
12.Zuiker, C.D., Krauss, A.R., Gruen, D.M., Carlisle, J.A., Terminello, L.J., Asher, S.A., and Bormett, R.W., in Applications of Synchrotron Radiation to Materials Science III, edited by Terminello, L.J., Mini, S., Ade, H., and Perry, D.L. (Mater. Res. Soc. Symp. Proc. 437, Pittsburgh, 1996) p. 221.Google Scholar
13.Csencsits, R., Zuiker, C.D., Gruen, D.M., and Krauss, A.R., Solid State Phen. 51–52 (1996) p. 261.CrossRefGoogle Scholar
14.Zuiker, C.D., Gruen, D.M., and Krauss, A.R., Electrochem. Soc. Proc. 95–4 (1995) p. 449.Google Scholar
15.Zuiker, C.D., Gruen, D.M., and Krauss, A.R., J. Appl. Phys. 79 (7) (1996) p. 3541.CrossRefGoogle Scholar
16.Erdemir, A., Halter, M., Fenske, G.R., Csencsits, R., Krauss, A.R., and Gruen, D.M., Tribology Trans. 40 (1997) p. 667.CrossRefGoogle Scholar
17.Erdemir, A., Bindal, C., Fenske, G.R., Zuiker, C., Csencsits, R., Krauss, A.R., and Gruen, D.M., Diamond Films Tcchnol. 6 (1) (1996) p. 31.Google Scholar
18.Zhou, D., Krauss, A.R., Corrigan, T.D., McCauley, T.G., Chang, R.P.H., and Gruen, D.M., J. Electrochem. Soc. 144 (8) (1997) p. L224.CrossRefGoogle Scholar
19.Zhou, D., Gruen, D.M., Qin, L-C., McCauley, T.G., and Krauss, A.R., J. Appl. Phys. 84 (4) (1998).Google Scholar
20.Goyette, A.N., Lawler, J.E., Anderson, L.W., Gruen, D.M., McCauley, T.G., Zhou, D., and Krauss, A.R., Plasma Sources Sci. Tcchnol. 7 (1998) p.149; A.N. Goyette, J.E. Lawler, L.W. Anderson, D.M. Gruen, T.G. McCauley, D. Zhou, and A.R. Krauss,, J. Phys. D 31 (1998) p. 1975.CrossRefGoogle Scholar
21.Redfern, P.C, Horner, D.A., Curtiss, L.A., and Gruen, D.M., J. Phys. Chem. 100 (1996) p. 11654.CrossRefGoogle Scholar
22.Huang, D. and Frenklach, M., J. Phys. Chem. 96 (1992) p. 1868; S. Skokov, B. Weiner, and M. Frenklach, J. Phys. Chem. 94 (1994) p. 7073; S. Skokov, B. Weiner, and M. Frenklach J. Phys. Chem. 99 (1995) p. 5616; M. Frenklach, J. Appl. Phys. 65 (1989) p. 5142; M. Frenklach and H. Wang, Phys. Rev. B 43 (1991) p. 1520; M. Frenklach, J. Chem. Phys. 97 (1992) p. 5794.CrossRefGoogle Scholar
23.Garrison, B.J., Dawnkaski, E.J., Srivastava, D., and Brenner, D., Science 255 (1992) p. 835.CrossRefGoogle Scholar
24.Belton, D.N. and Harris, S.J., J. Chem. Phys. 96 (1992) p. 2371; For diamond growth on (111) planes, see S.J. Harris, B.N. Belton, and RJ. Blint, J. Appl. Phys. 70 (1991) p. 2654; For (110), see S.J. Harris and D.N. Belton, Jpn. J. Appl. Phys. 30 (1991) p. 2615; For (100), see S.J. Harris and D.G. Goodwin, J. Phys. Chem. 97 (1993) p. 23.CrossRefGoogle Scholar
25.Latham, C.D., Heggie, M.I., and Jones, R., Diamond Rel. Mater. 2 (1993) p. 1493.CrossRefGoogle Scholar
26.Gruen, D.M. and Qin, L-C., presented at Symposium A, Materials Research Society Meeting, Boston, December 2,1997.Google Scholar
27.Keblinski, P., Wolf, D., Phillpot, S.R., and Gleiter, H., J. Mater. Res. 13 (1998) p. 2077.CrossRefGoogle Scholar
28.Hehre, W.J., Radom, L., and Pople, J.A., Ab lnitio Molecular Orbital Theory (John Wiley & Sons, New York, 1997).Google Scholar
29.Frisch, M.J.et al., Gaussian 94 (Gaussian, Pittsburgh, 1995).Google Scholar
30.Kohn, W., Becke, A.D., and Parr, R.G., J. Phys. Chem. 100 (1996) p. 12874.CrossRefGoogle Scholar
31.Gruen, D.M., Curtiss, L.A., Redfern, P.C., and Qin, L-C., in Proc. Fullerenes: Chemistry, Physics and New Directions XI Symp. (Electrochemical Society, San Diego, CA) in press.Google Scholar