Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T08:48:58.905Z Has data issue: false hasContentIssue false

Nanowire-Based Nanoelectronic Devices in the Life Sciences

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The interface between nanosystems and biosystems is emerging as one of the broadest and most dynamic areas of science and technology, bringing together biology, chemistry, physics, biotechnology, medicine, and many areas of engineering. The combination of these diverse areas of research promises to yield revolutionary advances in healthcare, medicine, and the life sciences through the creation of new and powerful tools that enable direct, sensitive, and rapid analysis of biological and chemical species. Devices based on nanowires have emerged as one of the most powerful and general platforms for ultrasensitive, direct electrical detection of biological and chemical species and for building functional interfaces to biological systems, including neurons. Here, we discuss representative ex amples of nanowire nanosensors for ultrasensitive detection of proteins and individual virus particles as well as recording, stimulation, and inhibition of neuronal signals in nanowire-neuron hybrid structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hu, J.T., Odom, T.W., and Lieber, C.M., Acc. Chem. Res. 32 (1999) p. 435.CrossRefGoogle Scholar
2.Lieber, C.M., MRS Bull. 28 (July 2003) p. 486.CrossRefGoogle Scholar
3.Li, Y., Qian, F., Xiang, J., and Lieber, C.M., Mater. Today 9 (10) (2006) p. 18.CrossRefGoogle Scholar
4.Wang, Z.L., Mater. Today 7 (6) (2004) p. 26.CrossRefGoogle Scholar
5.Samuelson, L., Mater. Today 6 (10) (2003) p. 22.CrossRefGoogle Scholar
6.Yang, P., MRS Bull. 30 (February 2005) p. 85.CrossRefGoogle Scholar
7.Patolsky, F. and Lieber, C.M., Mater. Today 8 (4) (2005) p. 20.CrossRefGoogle Scholar
8.Patolsky, F., Zheng, G., and Lieber, C.M., Anal. Chem. 78 (2006) p. 4261.CrossRefGoogle Scholar
9.Patolsky, F., Zheng, G., and Lieber, C.M., Nanomedicine 1 (2006) p. 51.CrossRefGoogle Scholar
10.Morales, A. and Lieber, C.M., Science 279 (1998) p. 208.CrossRefGoogle Scholar
11.Cui, Y., Wei, Q., Park, H., and Lieber, C.M., Science 293 (2001) p. 1289.CrossRefGoogle Scholar
12.Hahm, J. and Lieber, C.M., Nano Lett. 4 (2004) p. 51.CrossRefGoogle Scholar
13.Wang, W.U., Chen, C., Lin, K.H., Fang, Y., and Lieber, C.M., Proc. Natl. Acad. Sci. USA 102 (2005) p. 3208.CrossRefGoogle Scholar
14.Patolsky, F., Zheng, G.F., Hayden, O., Lakadamyali, M., Zhuang, X.W., and Lieber, C.M., Proc. Natl. Acad. Sci. USA 101 (2004) p. 14017.CrossRefGoogle Scholar
15.Zheng, G., Patolsky, F., Cui, Y., Wang, W.U., and Lieber, C.M., Nat. Biotechnol. 23 (2005) p. 1294.CrossRefGoogle Scholar
16.Cui, Y. and Lieber, C.M., Science 291 (2001) p. 851.CrossRefGoogle Scholar
17.Cui, Y., Zhong, Z.H., Wang, D.L., Wang, W.U., and Lieber, C.M., Nano Lett. 3 (2003) p. 149.CrossRefGoogle Scholar
18.Zheng, G., Lu, W., Jin, S., and Lieber, C.M., Adv. Mater. 16 (2004) p. 1890.CrossRefGoogle Scholar
19.Xiang, J., Lu, W., Hu, Y., Wu, Y., Yan, H., and Lieber, C.M., Nature 441 (2006) p. 489.CrossRefGoogle Scholar
20.Sze, S.M., Physics of Semicondutor Devices (Wiley, New York, 1981).Google Scholar
21.Huang, Y., Duan, X.F., Wei, Q.Q., and Lieber, C.M., Science 291 (2001) p. 630.CrossRefGoogle Scholar
22.Etzioni, R., Urban, N., Ramsey, S., McIntosh, M., Schwartz, S., Reid, B., and Radich, J., Nat. Rev. Cancer 3 (2003) p. 1.CrossRefGoogle Scholar
23.Wulfkuhle, J.D., Liotta, L.A., and Petricoin, E.F., Nat. Rev. Cancer 3 (2003) p. 267.CrossRefGoogle Scholar
24.Windhorst, U. and Johansson, H., Modern Techniques in Neuroscience Research: Electrical Activity of Individual Neurons In Situ: Extra-and Intracellular (Springer, New York, 1999).Google Scholar
25.Fromherz, P., ChemPhysChem 3 (2002) p. 276.3.0.CO;2-A>CrossRefGoogle Scholar
26.Oviedo, A.D. and Reyes, J., J. Neurosci. 25 (2005) p. 4985.CrossRefGoogle Scholar
27.Lambacher, A., Jenkner, M., Merz, M., Eversmann, B., Kaul, R.A., Hofmann, F., Thewes, R. and Fromherz, P., Appl. Phys. A 79 (2004) p. 1607.CrossRefGoogle Scholar
28.Offenhausser, A., Sprossler, C., Matsuzawa, M., and Knoll, W., Biosens. Bioelectron. 12 (1997) p. 819.CrossRefGoogle Scholar
29.Merz, M. and Fromherz, P., Adv. Funct. Mater. 15 (2005) p. 739.CrossRefGoogle Scholar
30.Voelker, M. and Fromherz, P., Small 1 (2005) p. 206.CrossRefGoogle Scholar
31.James, C.D., Spence, A.J.H., Dowell-Mesfin, N.M., Hussain, R.J., Smith, K.L., and Craighead, H.G., IEEE Trans. Biomed. Eng. 51 (2004) p. 1640.CrossRefGoogle Scholar
32.Jimbo, Y., Kasai, N., Torimitsu, K., Tateno, T., and Robinson, H.P.C., IEEE Trans. Biomed. Eng. 50 (2003) p. 241.CrossRefGoogle Scholar
33.Patolsky, F., Timko, B.P., Yu, G., Fang, Y., Greytak, A.B., Zheng, G., and Lieber, C.M., Science 313 (2006) p. 1100.CrossRefGoogle Scholar
34.Jin, S., Whang, D., McAlpine, M.C., Friedman, R.S., Wu, Y., and Lieber, C.M., Nano Lett. 4 (2004) p. 915.CrossRefGoogle Scholar
35.Gulledge, A.T. and Stuart, G.J., J. Neurosci. 23 (2003) p. 11363.CrossRefGoogle Scholar
36.Larkum, M.E. and Zhu, J.J., J. Neurosci. 15 (2002) p. 6991.CrossRefGoogle Scholar
37.Squire, L.R., Roberts, J.L., Spitzer, N.C., and Zigmond, M.J., Fundamental Neuroscience (Elsevier Science, San Diego, 2003).Google Scholar