No CrossRef data available.
Published online by Cambridge University Press: 29 November 2013
The versatility of wood as a raw material is emphasized by the realization that the mass of wood consumed annually in the United States is nearly that of the combined total U.S. consumption of aluminum, plastics, cement, and steel (Figure 1). Partly as a result of the enormous quantities consumed, many wood and paper products also make up significant fractions of the materials disposed in landfills, despite accelerated recycling efforts, notably those of the paper industry. With a target recycle rate of 40% by 1995, the paper industry will make further progress in alleviating some of the disposal problems, but additional efforts to recycle wood and wood-fiber-based materials into other types of products will also be needed. Many of these opportunities have been described. A common denominator in these utilization schemes is to consider how the morphology of secondary wood-based materials may limit their use, and how the morphological characteristics of recycled fiber and wood may influence the properties of the materials produced from them. These considerations suggest, at least partly, a materials science approach to the utilization of recycled fiber and wood, particularly for the fabrication of wood-based composites.
This article is a modification of an article published in Materials Research Society Symposium Proceedings Vol. 266, (1992) p. 47.