Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T03:03:51.908Z Has data issue: false hasContentIssue false

Ion-conducting glass-ceramics for energy-storage applications

Published online by Cambridge University Press:  06 March 2017

Hellmut Eckert
Affiliation:
São Carlos Institute of Physics, University of São Paulo, Brazil; [email protected]
Ana Candida Martins Rodrigues
Affiliation:
Universidade Federal de São Carlos, Brazil; [email protected]
Get access

Abstract

Glass-ceramics have gained considerable importance for applications in high-energy technology. Li- and Na-superionic ion-conducting ceramics find widespread use in lithium- and sodium-ion batteries as separators, solid electrolytes, and cathode materials. The ionic conductivity of these materials is influenced by crystal chemical parameters and can be further optimized via microstructural control using glass-ceramic processing. This article summarizes the most promising glass-ceramic material systems currently in use, detailing recent progress in understanding their structure–property–performance relationships. We also highlight the power and potential of solid-state nuclear magnetic resonance techniques for providing quantitative knowledge about structure, phase composition, and ion dynamics in these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Scrosati, B., Hassoun, J., Sun, Y.K., Energy Environ. Sci. 4, 3287 (2011).Google Scholar
Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D., Energy Environ. Sci. 4, 3243 (2011).Google Scholar
Kundu, D., Talaie, W., Duffort, V., Nazar, L.F., Angew. Chem. Int. Ed. 54, 3431 (2015).Google Scholar
Bachman, J.C., Muy, S., Grimeaud, A., Chang, H.H., Pour, N., Lux, S.F., Paschos, O., Maglia, F., Lupart, S., Lamp, P., Giordano, L., Shao-Horn, Y., Chem. Rev. 116, 140 (2016).Google Scholar
Yao, X., Huang, B., Yin, J., Peng, G., Huang, Z., Gao, C., Liu, D., Xu, X., Chin. Phys. B 25, 018802 (2016).Google Scholar
Fergus, J.W., J. Power Sources 195, 4554 (2010).CrossRefGoogle Scholar
Ren, Y., Chen, K., Chen, R., Liu, T., Zhang, Y., Nan, C.-W., J. Am. Ceram. Soc. 98, 3603 (2015).Google Scholar
Anantharamulu, N., Rao, K.K., Rambabu, G., Kumar, B.V., J. Mater. Sci. 46, 2821 (2011).Google Scholar
Kanno, R., Maruyama, M., J. Electrochem. Soc. 148, A742 (2001).Google Scholar
Deiseroth, H., Kong, S.T., Eckert, H., Vannahme, J., Reiner, C., Zaiß, T., Schlosser, M., Angew. Chem. Int. Ed. 47, 755 (2008).Google Scholar
Bunde, A., Ingram, M.D., Funke, K., Solid State Ionics 105, 1 (1998).Google Scholar
Chandra, A., Bhatt, A., Chandra, A., J. Mater. Sci. Technol. 29, 193 (2013).Google Scholar
Berbano, S.S., Mirsaneh, M., Lanagan, M.T., Randall, C.A., Int. J. Appl. Glass Sci. 4, 414 (2013).Google Scholar
Fu, J., Solid State Ionics 96, 195 (1997).Google Scholar
Martinez-Juarez, A., Pecharroman, C., Iglesias, J.A., Rojo, J.M., J. Phys. Chem. 102, 372 (1998).CrossRefGoogle Scholar
Arbi, K., Rojo, J.M., Sanz, J., J. Eur. Ceram. Soc. 27, 4215 (2007).Google Scholar
Lang, B., Ziebarth, B., Elsässer, C., Chem. Mater. 27, 5040 (2015).CrossRefGoogle Scholar
Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N., Adachi, G., J. Electrochem. Soc. 137, 1023 (1990).Google Scholar
Chowdari, B.V.R., Subba Rao, G.V., Lee, G.Y.H., Solid State Ionics 136, 1067 (2000).Google Scholar
Narvaez-Semanate, J.L., Rodrigues, A.C.M., Solid State Ionics 181, 1197 (2010).Google Scholar
Yi, E., Wang, W., Mohanty, S., Kieffer, J., Tamaki, R., Laine, R.M., J. Power Sources 269, 577 (2014).Google Scholar
Goharian, P., Yekta, B.E., Aghaei, A.R., Banijamali, S., J. Non Cryst. Solids 409, 120 (2015).Google Scholar
Xu, X., Wen, Z., Wu, J., Yang, Y., Solid State Ionics 178, 29 (2007).Google Scholar
Zhang, P., Wang, H., Si, Q., Matsui, M., Takeda, Y., Yamamoto, O., Imanishi, N., Solid State Ionics 272, 101 (2015).Google Scholar
Fu, J., Solid State Ionics 104, 191 (1997).Google Scholar
Cruz, A.M., Ferreira, E.B., Rodrigues, A.C.M., J. Non Cryst. Solids 355, 2295 (2009).Google Scholar
Mariappan, C.R., Gellert, M., Yada, C., Rosciano, F., Roling, B., Electrochem. Commun. 14, 25 (2012).Google Scholar
Hartmann, P., Leichtweiss, T., Busche, M.R., Schneider, M., Reich, M., Sann, J., Adelhelm, P., Janek, J., J. Phys. Chem. C 117, 21064 (2013).Google Scholar
Thokchom, J.S., Gupta, N., Kumar, B., J. Electrochem. Soc. 155, A915 (2008).Google Scholar
Zhang, M., Takahashi, K., Imanishi, M., Takeda, Y., Yamamoto, O., Chi, B., Pu, J., Li, J., J. Electrochem. Soc. 159, A1114 (2012).Google Scholar
Tokchom, J.S., Kumar, B., J. Am. Ceram. Soc. 90, 462 (2007).Google Scholar
Safanama, D., Sharma, N., Rao, R.P., Brand, H.E.A., Adams, S., J. Mater. Chem. A 4, 7718 (2016).Google Scholar
Schröder, C., Ren, J., Rodrigues, A.C.M., Eckert, H., J. Phys. Chem. C 118, 9400 (2014).Google Scholar
Santagneli, S.H., Baldacim, H.V.A., Ribeiro, S.J.L., Kundu, S., Rodrigues, A.C.M., Doerenkamp, C., Eckert, H., J. Phys. Chem. C 120, 14556 (2016).CrossRefGoogle Scholar
Liu, Z., Venkatachalam, S., van Wüllen, L., Solid State Ionics 276, 47 (2015).Google Scholar
Liu, Z., Venkatachalam, S., Kirchhain, H., van Wüllen, L., Solid State Ionics 295, 32 (2016).Google Scholar
Arbi, K., Mandal, S., Rojo, J.M., Sanz, J., Chem. Mater. 14, 1091 (2002).Google Scholar
Arbi, K., Bucheli, W., Jimenez, R., Sanz, J., J. Eur. Ceram. Soc. 35, 1477 (2015).Google Scholar
Arbi, K., Tabellout, M., Lazarraga, M.G., Rojo, J.M., Sanz, J., Phys. Rev. B Condens. Matter 72, 094302 (2005).Google Scholar
Arbi, K., Paris, M.A., Sanz, J., Dalton Trans. 40, 101195 (2011).Google Scholar
Francisco, B.E., Stoldt, C.R., M’Peko, J.C., Chem. Mater. 26, 4741 (2014).Google Scholar
Francisco, B.E., Stoldt, C.R., M’Peko, J.C., J. Phys. Chem. C 119, 16432 (2015).Google Scholar
Guin, M., Tietz, F., J. Power Sources 273, 1054 (2015).Google Scholar
Losilla, E.R., Aranda, M.A.G., Bruque, S., Sanz, J., Paris, M.A., Campo, J., West, A.R., Chem. Mater. 12, 2134 (2000).Google Scholar
Losilla, R., Aranda, M.A.G., Bruque, S., Chem. Mater. 10, 665 (1998).Google Scholar
Vignarooban, K., Kushagra, R., Elango, A., Badami, P., Mellander, B.E., Xu, X., Tucker, T.G., Nam, C., Kannan, A.M., Int. J. Hydrogen Energy 41, 2829 (2016).Google Scholar
Honma, T., Okamoto, M., Togashi, T., Ito, N., Shinzaki, K., Komatsu, T., Solid State Ionics 209, 19 (2015).Google Scholar
Subramanian, M.A., Rudolf, P.R., Clearfield, A., J. Solid State Chem. 60, 172 (1985).Google Scholar
Guin, M., Tietz, F., Guillon, O., Solid State Ionics 293, 18 (2016).Google Scholar
Zhang, Q., Wen, Z., Liu, Y., Song, S., Wu, X., J. Alloys Compd. 419, 494 (2009).Google Scholar
Zhu, Y.S., Li, L.L., Li, C.Y., Zhou, L., Wu, Y.P., Solid State Ionics 289, 113 (2016).Google Scholar
Nieto-Muñoz, A.M., “Desenvolvimento de Vitrocerâmicas com Estrutura Nasicon Condutoras por Íon Sódio da Série NaTi2(PO4)3,” master’s thesis, Universidade Federal de São Carlos (2015).Google Scholar
Li, C., Jiang, S., Lv, J.W., Zheng, T., J. Alloys Compd. 633, 246 (2015).Google Scholar
Ni, Y., Zheng, R., Tan, X., Yue, W., Lv, P., Yang, J., Song, D., Yu, K., Wei, W., J. Mater. Chem. A 3, 17558 (2015).Google Scholar
Katoh, T., Inda, Y., Nakajima, K., Ye, R., Baba, M., J. Power Sources 196, 6877 (2011).CrossRefGoogle Scholar
Inda, Y., Katoh, T., Baba, M., J. Power Sources 174, 741 (2007).Google Scholar
Imanishi, N., Matsui, M., Takeda, Y., Yamamoto, O., Electrochemistry 82, 938 (2014).Google Scholar
Sun, Y., Nano Energy 2, 801 (2013).Google Scholar
Shimonishi, Y., Zhang, T., Imanishi, N., Im, D., Lee, D.J., Hirano, A., Takeda, Y., Yamamoto, O., Sammes, N., J. Power Sources 196, 5128 (2011).Google Scholar
Safanama, D., Damiano, D., Rao, R.P., Adams, S., Solid State Ionics 262, 211 (2014).Google Scholar
Shi, J., Xia, Y., Han, S., Fang, L., Pan, M., Xu, X., Liu, Z., J. Power Sources 273, 389 (2015).Google Scholar
Feng, J.K., Yan, B.G., Liu, J.C., Lai, M.O., Li, L., Mater. Technol. 28, 276 (2013).Google Scholar
Feng, J., Xia, H., Lai, M.O., Li, L., J. Phys. Chem. C 113, 20514 (2009).Google Scholar
Arbi, K., Kuhn, A., Sanz, J., Garcia-Alvarado, F., J. Electrochem. Soc. 157, A654 (2010).Google Scholar
Liu, Y., Li, B., Kitaura, H., Zhang, X., Han, M., He, P., Zhou, H., ACS Appl. Mater. Interfaces 7, 17307 (2015).Google Scholar
Pietrzak, T.K., Michalski, P.P., Wasiucionek, M., Garbarczyk, J.E., Solid State Ionics 288, 193 (2016).Google Scholar
Noguchi, Y., Kobayashi, E., Plashnitsa, L.S., Okada, S., Yamaki, J., Electrochim. Acta 101, 59 (2013).Google Scholar
Lalere, F., Leriche, J.B., Courty, M., Boulineau, S., Viallet, V., Masquelier, C., Seznec, V., J. Power Sources 247, 975 (2014).Google Scholar
Li, G., Yang, Z., Jiang, Y., Jin, C., Huang, W., Ding, X., Huang, Y., Nano Energy 25, 21 (2016).Google Scholar
Schröder, C., “Moderne Festkörper-NMR-Untersuchungen zur Charakterisierung der Struktur und Dynamik lithiumhaltiger Gläser und Glaskeramiken,” PhD dissertation, Westfälische Wilhelms-Universität Münster (2014).Google Scholar