Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T08:41:12.584Z Has data issue: false hasContentIssue false

Interfacing metals and compounds for enhanced hydrogen evolution from water splitting

Published online by Cambridge University Press:  13 July 2020

Jian-Hong Tang
Affiliation:
University of Cincinnati, USA; [email protected]
Yujie Sun
Affiliation:
University of Cincinnati, USA; [email protected]
Get access

Abstract

Hydrogen production from water electrolysis with renewable energy input has been the focus of tremendous attention, as hydrogen is widely advocated as a clean energy carrier. In order to realize large-scale hydrogen generation from water splitting, it is essential to develop competent and robust electrocatalysts that will substantially decrease the overpotential requirement and improve energy efficiency. Recent advances in electrocatalyst design reveal that interfacial engineering is an effective approach in tuning the adsorption–desorption abilities of key catalytic intermediates on active sites, accelerating electron transfer, and stabilizing the active sites for long-term operation. Consequently, a large number of hybrid electrocatalysts consisting of metal/compound interfaces have been demonstrated to exhibit superior performance for electrocatalytic hydrogen evolution from water. This article highlights examples of these hybrid electrocatalysts, including noble metal and non-noble metal candidates interfaced with a variety of compounds. Specific emphasis is placed on the synthetic methods, reaction mechanisms, and electrocatalytic activities, which are envisioned to inspire the design and development of further improved electrocatalysts for hydrogen evolution from water splitting on an industrial scale.

Type
Nanomaterials for Electrochemical Water Splitting
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dresselhaus, M., Thomas, I., Nature 414, 332 (2001).CrossRefGoogle Scholar
Chu, S., Majumdar, A., Nature 488, 294 (2012).CrossRefGoogle Scholar
Linares, N., Silvestre-Albero, A.M., Serrano, E., Silvestre-Albero, J., Garcia-Martinez, J., Chem. Soc. Rev. 43, 7681 (2014).CrossRefGoogle Scholar
Tang, C., Wang, H.F., Zhang, Q., Acc. Chem. Res. 51, 881 (2018).Google Scholar
Yang, Z., Zhang, J., Kintner-Meyer, M.C., Lu, X., Choi, D., Lemmon, J.P., Liu, J., Chem. Rev. 111, 3577 (2011).CrossRefGoogle Scholar
Turner, J.A., Science 285, 687 (1999).CrossRefGoogle Scholar
Han, L., Dong, S.J., Wang, E.K., Adv. Mater. 28, 9266 (2016).Google Scholar
Wang, J., Xu, F., Jin, H.Y., Chen, Y.Q., Wang, Y., Adv. Mater. 29, 1605838 (2017).Google Scholar
Zou, X.X., Zhang, Y., Chem. Soc. Rev. 44, 5148 (2015).Google Scholar
Jiao, Y., Zheng, Y., Jaroniec, M.T., Qiao, S.Z., Chem. Soc. Rev. 44, 2060 (2015).CrossRefGoogle Scholar
Wang, J.H., Cui, W., Liu, Q., Xing, Z.C., Asiri, A.M., Sun, X.P., Adv. Mater. 28, 215 (2016).Google ScholarPubMed
Shi, Y.M., Zhang, B., Chem. Soc. Rev. 45, 1529 (2016).Google Scholar
Roger, I., Shipman, M.A., Symes, M.D., Nat. Rev. Chem. 1, 0003 (2017).CrossRefGoogle Scholar
Anantharaj, S., Ede, S.R., Sakthikumar, K., Karthick, K., Mishra, S., Kundu, S., ACS Catal. 6, 8069 (2016).Google Scholar
Zheng, Y., Jiao, Y., Vasileff, A., Qiao, S.Z., Angew. Chem. Int. Ed. Engl. 57, 7568 (2018).Google Scholar
Subbaraman, R., Tripkovic, D., Strmcnik, D., Chang, K.-C., Uchimura, M., Paulikas, A.P., Stamenkovic, V., Markovic, N.M., Science 334, 1256 (2011).CrossRefGoogle Scholar
Strmcnik, D., Lopes, P.P., Genorio, B., Stamenkovic, V.R., Markovic, N.M., Nano Energy 29, 29 (2016).CrossRefGoogle Scholar
Shao, Q., Wang, P.T., Huang, X.Q., Adv. Funct. Mater. 29, 1806419 (2019).CrossRefGoogle Scholar
Dubouis, N., Grimaud, A., Chem. Sci. 10, 9165 (2019).CrossRefGoogle Scholar
Ruqia, B., Choi, S.I., ChemSusChem 11, 2643 (2018).CrossRefGoogle Scholar
Zhang, J., Zhang, Q., Feng, X., Adv. Mater. 1808167 (2019).Google Scholar
Li, H., Chen, C., Yan, D., Wang, Y., Chen, R., Zou, Y., Wang, S., J. Mater. Chem. A 7, 23432 (2019).Google Scholar
Kwon, T., Jun, M., Joo, J., Lee, K., J. Mater. Chem. A 7, 5090 (2019).Google Scholar
Subbaraman, R., Tripkovic, D., Chang, K.-C., Strmcnik, D., Paulikas, A.P., Hirunsit, P., Chan, M., Greeley, J., Stamenkovic, V., Markovic, N.M., Nat. Mater. 11, 550 (2012).CrossRefGoogle Scholar
Yin, H., Zhao, S., Zhao, K., Muqsit, A., Tang, H., Chang, L., Zhao, H., Gao, Y., Tang, Z., Nat. Commun. 6, 6430 (2015).Google Scholar
Wang, L., Zhu, Y., Zeng, Z., Lin, C., Giroux, M., Jiang, L., Han, Y., Greeley, J., Wang, C., Jin, J., Nano Energy 31, 456 (2017).Google Scholar
Sarabia, F.J., Sebastián-Pascual, P., Koper, M.T., Climent, V., Feliu, J.M., ACS Appl. Mater. Interfaces 11, 613 (2018).Google Scholar
Wang, Y., Chen, L., Yu, X., Wang, Y., Zheng, G., Adv. Energy Mater. 7, 1601390 (2017).Google Scholar
Lao, M., Rui, K., Zhao, G., Cui, P., Zheng, X., Dou, S.X., Sun, W., Angew. Chem. Int. Ed. Engl. 58, 5432 (2019).Google Scholar
Basu, M., Nazir, R., Fageria, P., Pande, S., Sci. Rep. 6, 34738 (2016).Google Scholar
Yu, Q., Luo, Y., Qiu, S., Li, Q., Cai, Z., Zhang, Z., Liu, J., Sun, C., Liu, B., ACS Nano 13, 11874 (2019).Google Scholar
Zhang, L.-N., Lang, Z.-L., Wang, Y.-H., Tan, H.-Q., Zang, H.-Y., Kang, Z.-H., Li, Y.-G., Energy Environ. Sci. 12, 2569 (2019).Google Scholar
Cheng, Y., Lu, S., Liao, F., Liu, L., Li, Y., Shao, M., Adv. Funct. Mater. 27, 1700359 (2017).Google Scholar
Liu, S., Li, M., Wang, C., Jiang, P., Hu, L., Chen, Q., ACS Sustain. Chem. Eng. 6, 9137 (2018).Google Scholar
Gao, T., Yang, J., Nishijima, M., Miller, H.A., Vizza, F., Gu, H., Chen, H., Hu, Y., Jiang, Z., Wang, L., J. Electrochem. Soc. 165, F1147 (2018).Google Scholar
Danilovic, N., Subbaraman, R., Strmcnik, D., Chang, K.C., Paulikas, A., Stamenkovic, V., Markovic, N.M., Angew. Chem. Int. Ed. Engl. 51, 12495 (2012).Google Scholar
Chhetri, M., Sultan, S., Rao, C., Proc. Natl. Acad. Sci. U.S.A. 114, 8986 (2017).CrossRefGoogle Scholar
Weng, Z., Liu, W., Yin, L.-C., Fang, R., Li, M., Altman, E.I., Fan, Q., Li, F., Cheng, H.-M., Wang, H., Nano Lett. 15, 7704 (2015).CrossRefGoogle Scholar
Gong, M., Zhou, W., Tsai, M.-C., Zhou, J., Guan, M., Lin, M.-C., Zhang, B., Hu, Y., Wang, D.-Y., Yang, J., Nat. Commun. 5, 4695 (2014).Google Scholar
Liu, X., Ni, K., Niu, C., Guo, R., Xi, W., Wang, Z., Meng, J., Li, J., Zhu, Y., Wu, P., ACS Catal. 9, 2275 (2019).Google Scholar
Ji, D., Peng, L., Shen, J., Deng, M., Mao, Z., Tan, L., Wang, M., Xiang, R., Wang, J., Shah, S.S.A., Chem. Commun. 55, 3290 (2019).Google Scholar
You, B., Jiang, N., Sheng, M., Bhushan, M.W., Sun, Y., ACS Catal. 6, 714 (2016).CrossRefGoogle Scholar
Xiong, K., Gao, Y., Chen, J., Shen, Y., Zhang, H., Chem. Commun. 56, 611 (2019).Google Scholar
Song, F., Li, W., Yang, J., Han, G., Liao, P., Sun, Y., Nat. Commun. 9, 4531 (2018).Google Scholar
Ma, Y.-Y., Lang, Z.-L., Yan, L.-K., Wang, Y.-H., Tan, H.-Q., Feng, K., Xia, Y.-J., Zhong, J., Liu, Y., Kang, Z.-H., Energy Environ. Sci. 11, 2114 (2018).Google Scholar
Song, F., Li, W., Yang, J., Han, G., Yan, T., Liu, X., Rao, Y., Liao, P., Cao, Z., Sun, Y., ACS Energy Lett. 4, 1594 (2019).Google Scholar
Yuan, C.-Z., Zhong, S.-L., Jiang, Y.-F., Yang, Z.K., Zhao, Z.-W., Zhao, S.-J., Jiang, N., Xu, A.-W., J. Mater. Chem. A 5, 10561 (2017).Google Scholar
Wang, H., Min, S., Wang, Q., Li, D., Casillas, G., Ma, C., Li, Y., Liu, Z., Li, L.-J., Yuan, J., ACS Nano 11, 4358 (2017).Google Scholar
Yan, X., Tian, L., He, M., Chen, X., Nano Lett. 15, 6015 (2015).Google Scholar
Zhu, C., Wang, A.L., Xiao, W., Chao, D., Zhang, X., Tiep, N.H., Chen, S., Kang, J., Wang, X., Ding, J., Adv. Mater. 30, 1705516 (2018).Google Scholar
Liu, Y., Li, Q., Si, R., Li, G.D., Li, W., Liu, D.P., Wang, D., Sun, L., Zhang, Y., Zou, X., Adv. Mater. 29, 1606200 (2017).Google Scholar
Feng, J.-X., Wu, J.-Q., Tong, Y.-X., Li, G.-R., J. Am. Chem. Soc. 140, 610 (2018).Google Scholar
Sun, Y., Huang, C., Shen, J., Zhong, Y., Ning, J., Hu, Y., J. Colloid Interface Sci. 558, 1 (2019).Google Scholar