Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T05:31:07.838Z Has data issue: false hasContentIssue false

High-Temperature Stability of Non-Oxide Structural Ceramics

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Oxide-based ceramics have long been used as linings in containment vessels for hot materials (metals, glasses, cement, etc.) and hot gases, at temperatures often in excess of 1500°C, because of their chemical compatibility with these hot materials and with the process ambient—conditions where metals and polymers simply can't perform. However, their low thermal conductivities and generally high thermal expansivities cause poor thermal shock resistance. In addition, their creep resistance (resistance to permanent deformation under load) is generally poorer than the more covalently bonded ceramic materials such as nitrides and carbides which also have excellent thermal shock resistance.

Type
Environmental Stability of Materials
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.High Temperature Corrosion of Technical Ceramics, edited by Fordham, R.J. (Elsevier Applied Science, London, 1990).Google Scholar
2.Environmental Corrosion Degradation of Ceramics, edited by Tressler, R.E. and McNallan, M.J. (American Ceramic Society, Westerville, OH, 1990).Google Scholar
3.Jacobson, N.S., J. Am. Ceram. Soc. 76 (1) (1993) p. 3.CrossRefGoogle Scholar
4.Tressler, R.E., in Reference 2, p. 99.Google Scholar
5.Beal, B.E. and Grove, A.S., J. Appl. Phys. 36 (12) (1965) p. 3770.Google Scholar
6.Spear, K.E., Tressler, R.E., Zheng, Z., and Du, H., in Reference 2, p. 1.Google Scholar
7.Costello, J.A. and Tressler, R.E., J. Am. Ceram. Soc. 69 (9) (1986) p. 674.CrossRefGoogle Scholar
8.Du, H., Tressler, R.E., Spear, K.E., and Pantano, C.G., J. Electrochem. Soc. 136 (5) (1989) p. 1527.CrossRefGoogle Scholar
9.Ogbuji, L.U.J.T., J. Am. Ceram. Soc. 75 (11) (1992) p. 2995.CrossRefGoogle Scholar
10.Zheng, Z., Tressler, R.E., and Spear, K.E., J. Electrochem. Soc. 137 (3) (1990) p. 854.CrossRefGoogle Scholar
11.Zheng, Z., Tressler, R.E., and Spear, K.E., J. Electrochem. Soc. 137 (9) (1990) p. 2812.CrossRefGoogle Scholar
12.Du, H., Tressler, R.E., and Spear, K.E., J. Electrochem. Soc. 136 (11) (1989) p. 3210.CrossRefGoogle Scholar
13.Luthra, K.L., J. Am. Ceram. Soc. 74 (5) (1991) p. 1095.CrossRefGoogle Scholar
14.Tressler, R.E., Meiser, M.D., and Yonushonis, T., J. Am. Ceram. Soc. 59 (5–6) (1976) p. 278.CrossRefGoogle Scholar
15.Zheng, Z., Tressler, R.E., and Spear, K.E., Corros. Sci. 33 (4) (1992) p. 569.CrossRefGoogle Scholar
16.Ip, S.Y., Saam, S., McNallan, M.J., and Liang, W.W., High Temperature Materials Chemistry-III, edited by Munir, Z.A and Cubiciotti, D. (The Electrochem. Soc. Inc., 1986) p. 328.Google Scholar
17.Marra, J.E., Kreidler, E.R., Jacobson, N.S., and Fox, D.S., Silicon Carbide '87, edited by Cawley, J.D. and Semler, C.E. (Am. Ceram. Soc., Westerville, OH, 1989) p. 275.Google Scholar
18.Ip, S.Y. and McNallan, M.J., Silicon Carbide '87, edited by Cawley, J.D. and Semler, C.E. (Am. Ceram. Soc., Westerville, OH, 1989) p. 289.Google Scholar
19.Monkowski, J., Solid State Technol. 22 (7) (1979) p. 58; 22 (8) (1979) p. 113.Google Scholar
20.Kriegler, R.J., Cheng, Y.C., and Colton, D.R., J. Electrochem. Soc. 119 (3) (1972) p. 388.CrossRefGoogle Scholar
21.Singh, B.R. and Balk, P., J. Electrochem. Soc. 125 (3) (1978) p. 453.CrossRefGoogle Scholar
22.Rhotagi, A., Butler, S.R., Feigl, F.J., Kraner, H.W., and Jones, K.W., J. Electrochem. Soc. 126 (1) (1979) p. 143.Google Scholar
23.Beal, B.E., Hess, D.W., Plummer, J.D., and Ho, C.F., J. Electrochem. Soc. 125 (2) (1978) p. 339.Google Scholar
24.Hirabayashi, K. and Iwamura, J., J. Electrochem. Soc. 120 (11) (1973) p. 1595.CrossRefGoogle Scholar
25.Monkowski, J., Tressler, R.E., and Stach, J., J. Electrochem. Soc. 125 (11) (1978) p. 1867.CrossRefGoogle Scholar
26.Monkowski, M.D., Monkowski, J.R., Tsong, I.S.T., Stach, J., and Tressler, R.E., J. Non-Cryst. Solids 49 (1982) p. 201.CrossRefGoogle Scholar
27.Zheng, Z., Tressler, R.E., and Spear, K.E., Corros. Sci. 33 (4) (1992) p. 557.CrossRefGoogle Scholar
28.McNallan, M.J., Ip, S.Y., Lee, S.Y., and Park, C., in Reference 2, p. 304.Google Scholar
29.Jorgensen, P.J., Wadsworth, M.E., and Cutler, I.B., J. Am. Ceram. Soc. 44 (6) (1961) p. 258.CrossRefGoogle Scholar
30.Cappelen, H., Johansen, K.H., and Motzfeld, K., Acta Chem. Scand. A 35 (1981) p. 247.CrossRefGoogle Scholar
31.Narushima, T., Goto, T., Iguchi, Y., and Hirai, T., J. Am. Ceram. Soc. 73 (12) (1990) p. 1580.CrossRefGoogle Scholar
32.Maceda, M., Nakamura, K., and Ohkubo, T., J. Mater. Sci. 23 (1988) p. 3933.Google Scholar
33.Tressler, R.E., Costello, J.A., and Zheng, Z., Industrial Heat Exchangers, edited by Hayes, A.J. (American Society of Metals, Warrendale, PA, 1985) p. 307.Google Scholar
34.Choi, D.J., Fischbach, D.B., and Scott, W.D., J. Am. Ceram. Soc. 72 (7) (1989) p. 1118.CrossRefGoogle Scholar
35.Lange, F.F., Ceramics for High Performance Applications III: Reliability, edited by Lenoe, E.M., Katz, R.N., and Burke, J.J. (Plenum Press, New York, 1983) p. 275.CrossRefGoogle Scholar
36.Thompson, D.P., Tailoring Multiphase and Composite Ceramics, edited by Tressler, R.E., Messing, G.L., Panatano, C.G., and Newnham, R.E. (Plenum Press, New York, 1986) p. 79.CrossRefGoogle Scholar
37.Lewis, M.H., in Reference 36, p. 713.Google Scholar
38.Lewis, M.H., in Reference 2, p. 605.Google Scholar
39.Fox, D.S. and Jacobson, N.S., J. Am. Ceram. Soc. 71 (1988) p. 128.CrossRefGoogle Scholar
40.Oliveira, F.C., Edwards, R.A.H., Fordham, R.J., and Riley, F.L., High-Temperature Corrosion of Technical Ceramics, edited by Fordham, R.J., (Elsevier, New York, 1990) p. 53.Google Scholar
41.Gulbransen, E.A. and Jansson, S.A., Oxid. Met. 4 (3) (1972) p. 181.CrossRefGoogle Scholar
42.Heuer, A.H. and Lou, V.L.K., J. Am. Ceram. Soc. 73 (10) (1990) p. 2789.CrossRefGoogle Scholar
43.Hinze, J.W. and Graham, H.C., J. Electrochem. Soc. 123 (7) (1976) p. 1066.CrossRefGoogle Scholar
44.Butt, D.P., Tressler, R.E., and Spear, K.E., J. Am. Ceram. Soc. 75 (12) (1992) p. 3257.CrossRefGoogle Scholar
45.Rapp, R.A., Corns. Sci. 42 (10) (1986) p. 568.Google Scholar
46.Pettit, F.S. and Giggins, C.S., Superalloys II, edited by Sims, C.T., Stoloff, N.S., and Hagel, W.C. (John Wiley and Sons, New York, 1987) p. 327.Google Scholar
47.Jacobson, N.S., Smialek, J.L., and Fox, D.S., Handbook of Ceramics and Composites, edited by Cheremisinoff, N.P. (Marcel Dekker, New York, 1990) p. 327.Google Scholar
48.Gratwohl, G., in Reference 2, p. 573.Google Scholar
49.Minford, E.J. and Tressler, R.E., J. Am. Ceram. Soc. 66 (5) (1983) p. 338.CrossRefGoogle Scholar
50.Minford, E.J., Kupp, D.M., and Tressler, R.E., J. Am. Ceram. Soc. 66 (11) (1983) p. 769.CrossRefGoogle Scholar
51.Chuang, T.J., Tressler, R.E., and Minford, E.M., Materials Science and Engineering 82 (1986) p. 187.CrossRefGoogle Scholar