Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T12:50:53.618Z Has data issue: false hasContentIssue false

High Resolution Transmission Electron Microscopy

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The transmission electron microscope (TEM) has had a major impact on materials science in the last five decades, despite the fact that it is necessary to prepare thin samples in order to use the technique. The primary reason for this effectiveness is the ability to access both real space and diffraction data in the same instrument, and to filter in one and observe the effect in the other. This is possible because of the wave nature of electrons and the existence of effective magnetic lenses for focusing. Abbe showed that any lens has the ability to Fourier transform its input wavefield in its focal plane, and to provide a second Fourier transform in the image plane. This is schematically shown in Figure 1. A crystalline object will diffract only in certain directions, with Bragg angles (θB) depending on the inverse of the interplanar spacing. The diffraction pattern is a series of spots in the Fourier, or focal, plane of the lens. A filter placed in the focal plane serves to limit the resolution by limiting the bandwidth of the image, but it also can serve to select certain parts of the Fourier spectrum in the image. The simplest examples of this, as used in optical microscopy, are bright-field and dark-field imaging. In the former the un-scattered beam is allowed to reach the image, in the latter it is not.

Type
Imaging in Materials Science
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Marcus, M., Phys. Rev. A 25 (1982) p. 2276.CrossRefGoogle Scholar
2. For example, see Experimental High Resolution Electron Microscopy by Spence, J.C.H. (Oxford University Press, New York, 1988).Google Scholar
3. Stobbs, W.M. and Ross, F.M., in Evaluation of Advanced Semiconductor Materials by Electron Microscopy, NATO ASI Series, edited by Cherns, D., (Plenum, New York, 1989).Google Scholar
4. Crewe, A.V., Wall, J., and Langmore, J., Science 168 (1970) p. 1338.Google Scholar
5. Treacy, M.M.J., Howie, A., and Pennycook, S.J., Inst. Phys. Conf. Ser. 52 (1980) p. 261.Google Scholar
6. Krakow, W. and Howland, L.A., Ultramic. 2 (1976) p. 53.Google Scholar
7. Unwin, P.N.T. and Henderson, R., J. Mol. Biol. 94 (1975) p. 425.Google Scholar
8. Thomas, J.M., Ultramic. 8 (1982) p. 13.Google Scholar
9. Kihlborg, L. and Sharma, R., J. Microsc. Spectres. Electron. 7 (1982) p. 387.Google Scholar
10. Treacy, M.M.J. and Newsam, J.M., Nature 332 (1988) p. 249; Proc. Roy. Soc. A 420 (1988) p. 375.Google Scholar
11. Gibson, J.M., Chen, C.H., and McDonald, M.L., Phys. Rev. Lett. 50 (1983) p. 1403.Google Scholar
12. Bird, D.M., McKernan, S., and Steeds, J.W., J. Phys. C 18 (1985) p. 499.Google Scholar
13. Howie, A., in High Resolution Electron Microscopy, edited by Buseck, P., Cowley, J.M., and Eyring, L. (Oxford University Press, 1988).Google Scholar
14. Gibson, J.M. and Howie, A., Chemien Scripta 14 (1984) p. 1.Google Scholar
15. Robinson, I.K., MRS Bulletin XV (9) (1990) p. 38.Google Scholar
16. Zegenhagen, J., Huang, K.G., Hunt, B.D., and Schowalter, L.J., Appl. Phys. Lett. 51 (1987) p. 1176.Google Scholar
17. For example, see Specimen Preparation for Transmission Electron Microscopy, edited by Bravman, J.C., Anderson, R., McDonald, M.L. (Mater. Res. Soc. Symp. Proc. 115, Pittsburgh, PA, 1988).Google Scholar
18. Tung, R.T., Phys. Rev. Lett. 52 (1984) p. 461.Google Scholar
19. Cherns, D., Spence, J.C.H., Anstis, G.R., and Hutchison, J.L., Phil. Mag. A 26 (1982) p. 849.Google Scholar
20. Gibson, J.M., Tung, R.T., and Poate, J.M., in Defects in Semiconductors II, edited by Mahajan, S. and Corbett, J.W. (Mater. Res. Soc. Symp. Proc. 14, Pittsburgh, PA, 1983) p. 395.Google Scholar
21. Gibson, J.M., Ultramic. 14 (1984) p. 1; and in Surface and Interface Characterization by Electron Optical Methods, edited by A. Howie and U. Valdre (Plenum, New York, 1988) p. 55.Google Scholar
22. Gibson, J.M., Hull, R., Bean, J.C., and Treacy, M.M.J., Appl. Phys. Lett. 46 (1985) p. 649.Google Scholar
23. Fischer, A.E.M.J., Vlieg, E., van der Veen, J.F., Clausnitzer, M., and Materlik, G., Phys. Rev. B 36 (1987) p. 4769.Google Scholar
24. Das, G.P., Blochl, P., Andersen, O.K., Christensen, N.E., and Gunnarson, O., Phys. Rev. Lett. 63 (1989) p. 1168.Google Scholar
25. Gibson, J.M., Bean, J.C., Poate, J.M., and Tung, R.T., Appl. Phys. Lett. 41 (1982) p. 818.Google Scholar
26. Hamann, D.R., Phys. Rev. Lett. 60 (1988) p. 313.Google Scholar
27. Bulle-Lieuwma, C.W.T., dejong, A.F., van Ommen, A.H., vander Veen, J.F., and Vrijmoeth, J., Appl. Phys. Lett. 55 (1989) p. 648.Google Scholar
28. Marks, L.D. and Smith, D.J., Nature 303 (1983) p. 316.CrossRefGoogle Scholar
29. For example, see papers in J. de Physique 4 (1985).Google Scholar
30. Hull, R., Gibson, J.M., and Bean, J.C., Appl. Phys. Lett. 46 (1985) p. 179.Google Scholar
31. Ourmazd, A., Yaylor, D.W., Cunningham, J., and Tu, C.W., Phys. Rev. Lett. 62 (1989) p. 933.Google Scholar
32. Prokes, S.M. and Spaepen, F., Appl. Phys. Lett. 47 (1985) p. 234.Google Scholar
33. Kim, Y., Ourmazd, A., Bode, M., and Feldman, R.D., Phys. Rev. Lett. 63 (1989) p. 636.CrossRefGoogle Scholar
34. For example, see Dahmen, U., Douin, J., Hetherington, C.J.D., and Westmacott, K.H., in High Resolution Microscopy of Materials, edited by Krakow, W., Ponce, F.A., and Smith, D.J. (Mater. Res. Soc. Symp. Proc. 139, Pittsburgh, PA, 1988) p. 87.Google Scholar
35. For example, see Krakow, W. and Smith, D.A., Ultramic. 22 (1987) p. 47.Google Scholar
36. Miyazawa, K. and Ishida, Y., Ultramic. 22 (1987) p. 231.Google Scholar
37. Gibson, J.M., Batstone, J.L., and Lanzerath, M.Y., in Evaluation of Advanced Semiconductor Materials by Electron Microscopy, NATO ASI Series, edited by Cherns, D., (Plenum, New York, 1989).Google Scholar
38. Loretto, D., Gibson, J.M., and Yalisove, S.M., Phys. Rev. Lett. 63 (1989) p. 298.Google Scholar
39. Ourmazd, A., MRS Bulletin XV (9) (1990) p. 58.Google Scholar
40. Gibson, J.M. and McDonald, M.L., in Characterization of Defects in Materials, edited by Siegel, R.W., Weertman, J.R., Sinclair, R. (Mater. Res. Soc. Symp. Proc. 82, Pittsburgh, PA, 1987) p. 109.Google Scholar