Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T03:29:50.012Z Has data issue: false hasContentIssue false

Graphene: Materially Better Carbon

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Graphene, a single atom–thick plane of carbon atoms arranged in a honeycomb lattice, has captivated the attention of physicists, materials scientists, and engineers alike over the five years following its experimental isolation. Graphene is a fundamentally new type of electronic material whose electrons are strictly confined to a two-dimensional plane and exhibit properties akin to those of ultrarelativistic particles. Graphene's two-dimensional form suggests compatibility with conventional wafer processing technology. Extraordinary physical properties, including exceedingly high charge carrier mobility, current-carrying capacity, mechanical strength, and thermal conductivity, make it an enticing candidate for new electronic technologies both within and beyond complementary metal oxide semiconductors (CMOS). Immediate graphene applications include high-speed analog electronics and highly conductive, flexible, transparent thin films for displays and optoelectronics. Currently, much graphene research is focused on generating and tuning a bandgap and on novel device structures that exploit graphene's extraordinary electrical, optical, and mechanical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Oshima, C., Nagashima, A., J. Phys. 9, 1 (1997).Google Scholar
2.Novoselov, K.S., Geim, A.K., Morozo, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science 306, 666 (2004).CrossRefGoogle Scholar
3.Novoselov, K.S., Jiang, D., Schedin, F., Booth, T., Khotkevich, V.V., Morozov, S.V., Geim, A.K., PNAS 102, 10451 (2005).CrossRefGoogle Scholar
4.Novoselov, K.S., Geim, A.K., Morozo, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A., Nature 438, 197 (2005).CrossRefGoogle Scholar
5.Zhang, Y.B., Tan, Y.W., Stormer, H.L., Kim, P.Nature 438, 201 (2005).CrossRefGoogle Scholar
6.Gusynin, V.P., Sharapov, S.G., Phys. Rev. Let 95, 146801 (2005).CrossRefGoogle Scholar
7.Berger, C., Song, Z.M., Li, X.B., Wu, X.S., Brown, N., Naud, C., Mayo, D., Li, T.B., Hass, J., Marchenkov, A.N., Conrad, E.H., Firs, P.N., de Heer, W.A., Science 312, 1191 (2006).CrossRefGoogle Scholar
8.Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Ahn, J.H., Kim, P., Choi, J.Y., Hong, B.H., Nature 457, 706 (2009).CrossRefGoogle Scholar
9.Li, X.S., Cai, W.W., An, J.H., Kim, S., Nah, J., Yang, D.X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S., Science 324, 1312 (2009).CrossRefGoogle Scholar
10.Reina, A., Jia, X.T., Ho, J., Nezich, D., Son, H.B., Bulovic, V., Dresselhaus, M.S., Kong, J., Nano Lett. 9, 30 (2009).CrossRefGoogle Scholar
11.Chen, J.H., Jang, C., Xiao, S.D., Ishigami, M., Fuhrer, M.S., Nat. Nanotechnol. 3, 206 (2008).CrossRefGoogle Scholar
12.Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., Schedin, F., Elias, D.C., Jaszczak, J.A., Geim, A.K., Phys. Rev. Lett. 100, 016602 (2008).CrossRefGoogle Scholar
13.Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L., Solid State Commun. 146, 351 (2008).CrossRefGoogle Scholar
14.Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N., Nano Lett. 8, 902 (2008).CrossRefGoogle Scholar
15.Standley, B., Bao, W., Zhang, H., Bruck, J., Lau, C.N., Bockrath, M., Nano Lett. 8, 3345 (2008).CrossRefGoogle Scholar
16.Moser, J., Barreiro, A., Bachtold, A., Appl. Phys. Lett. 91, 163513 (2007).CrossRefGoogle Scholar
17.Wallace, P.R., Phys. Rev. 71, 622 (1947).CrossRefGoogle Scholar
18.Ando, T., Nakanishi, T., Saito, R., J. Phys. Soc. Jpn. 67, 2857 (1998).CrossRefGoogle Scholar
19.McEuen, P.L., Bockrath, M., Cobden, D.H., Yoon, Y.G., Louie, S.G., Phys. Rev. Lett. 83, 5098 (1999).CrossRefGoogle Scholar
20.Bachtold, A., Fuhrer, M.S., Plyasunov, S., Forero, M., Anderson, E.H., Zettl, A., McEuen, P.L., Phys. Rev. Lett. 84, 6082 (2000).CrossRefGoogle Scholar
21.Purewal, M., Hong, B.H., Ravi, A., Chandra, B., Hone, J., Kim, P., Phys. Rev. Lett, 98, 186808 (2007).CrossRefGoogle Scholar
22.Fowler, A.B., Fang, F.F., Howard, W.E., Stiles, P.J., J. Phys. Soc. Jpn. S 21, 331 (1966).Google Scholar
23.Lee, C., Wei, X.D., Kysar, J.W., Hone, J., Science 321, 385 (2008).CrossRefGoogle Scholar
24.Bunch, J.S., Verbridge, S.S., Alden, J.S., van der Zande, A.M., Parpia, J.M., Craighead, H.G., McEuen, P.L., Nano Lett. 8, 2458 (2008).CrossRefGoogle Scholar
25.Bao, W., Miao, F., Chen, Z., Zhang, H., Jang, W., Dames, C., Lau, C.N., Nat. Nanotechnol. 4, 562 (2009).CrossRefGoogle Scholar
26.Kim, E.-A., Castro Neto, A.H., Europhys. Lett. 84, 57007 (2008).CrossRefGoogle Scholar
27.Katsnelson, M.I., Geim, A.K., Philos. Trans. R. Soc. A 366, 195 (2008).CrossRefGoogle Scholar
28.Guinea, F., Horovitz, B., Le Doussal, P., Phys. Rev. B 77, 205421 (2008).CrossRefGoogle Scholar
29.Guinea, F., Katsnelson, M.I., Vozmediano, M.A.H., Phys. Rev. B 77, 075422 (2008).CrossRefGoogle Scholar
30.de Parga, A.L.V., Calleja, F., Borca, B., Passeggi, M.C.G., Hinarejos, J.J., Guinea, F., Miranda, R., Phys. Rev. Lett. 100, 056807 (2008).CrossRefGoogle Scholar
31.Pereira, V.M., Castro Neto, A.H., (2008), arXiv:0810.4539v1.Google Scholar
32.Chen, Z., Jang, W., Bao, W., Lau, C.N., Dames, C., Appl. Phys. Lett. 95, 161910 (2009).CrossRefGoogle Scholar
33.Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K., Phys. Rev. Lett. 97, 187401 (2006).CrossRefGoogle Scholar
34.Blake, P., Hill, E.W., Neto, A.H.C., Novoselov, K.S., Jiang, D., Yang, R., Booth, T.J., Geim, A.K., Appl. Phys. Lett. 91 (2007).Google Scholar
35.Kuzmenko, A.B., van Heumen, E., Carbone, F., van der Marel, D., Phys. Rev. Lett. 100, 117401 (2008).CrossRefGoogle Scholar
36.Mak, K.F., Sfeir, M.Y., Yang, W., Chun Hung, L., Misewich, J.A., Heinz, T.F., Phys. Rev. Lett. 101, 196405 (2008).CrossRefGoogle Scholar
37.Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K., Science 320, 1308 (2008).CrossRefGoogle Scholar
38.Berger, C., Song, Z.M., Li, T.B., Li, X.B., Ogbazghi, A.Y., Feng, R., Dai, Z.T., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A., J. Phys. Chem. B 108, 19912 (2004).CrossRefGoogle Scholar
39.Cho, S., Fuhrer, M.S., Phys. Rev. B 77, 081402 (2008).CrossRefGoogle Scholar
40.Adam, S., Hwang, E.H., Galitski, V.M., Das Sarma, S., PNAS 104, 18392 (2007).CrossRefGoogle Scholar
41.Jang, C., Adam, S., Chen, J.-H., Williams, E.D., Das Sarma, S., Fuhrer, M.S., Phys. Rev. Lett. 101, 146805 (2008).CrossRefGoogle Scholar
42.Chen, J.-H., Jang, C., Ishigami, M., Xiao, S., Williams, E.D., Fuhrer, M.S., Solid State Commun. 149, 1080 (2009).CrossRefGoogle Scholar
43.Chen, J.-H., Cullen, W.G., Jang, C., Fuhrer, M.S., Williams, E.D., Phys. Rev. Lett. 102, 236805 (2009).CrossRefGoogle Scholar
44.Hentschel, M., Guinea, F., Phys. Rev. B 76, 115407 (2007).CrossRefGoogle Scholar
45.Stauber, T., Peres, N.M.R., Guinea, F., Phys. Rev. B 76, 205423 (2007).CrossRefGoogle Scholar
46.Shon, N.H., Ando, T., J. Phys. Soc. Jpn. 67, 2421 (1998).CrossRefGoogle Scholar
47.Ando, T., J. Phys. Soc. Jpn. 75, 074716 (2006).CrossRefGoogle Scholar
48.Hwang, E.H., Adam, S., Das Sarma, S., Phys. Rev. Lett. 98, 186806 (2007).CrossRefGoogle Scholar
49.Nomura, K., MacDonald, A.H., Phys. Rev. Lett. 98, 076602 (2007).CrossRefGoogle Scholar
50.Rossi, E., Adam, S., Das Sarma, S., Phys. Rev. B 79, 245423 (2009).CrossRefGoogle Scholar
51.Hess, K., Vogl, P., Solid State Commun. 30, 807 (1979).CrossRefGoogle Scholar
52.Fratini, S., Guinea, F., Phys. Rev. B 77, 195415 (2008).CrossRefGoogle Scholar
53.Hwang, E.H., Das Sarma, S., Phys. Rev. B 77, 115449 (2008).CrossRefGoogle Scholar
54.Bennett, B.R., Magno, R., Boos, J.B., Kruppa, W., Ancona, M.G., Solid-State Electron. 49, 1875 (2005).CrossRefGoogle Scholar
55.Bolotin, K.I., Sikes, K.J., Hone, J., Stormer, H.L., Kim, P., Phys. Rev. Lett. 101, 096802 (2008).CrossRefGoogle Scholar
56.Du, X., Skachko, I., Barker, A., Andrei, E.Y., Nat. Nanotechnol. 3, 491 (2008).CrossRefGoogle Scholar
57.Wang, H., Nezich, D., Kong, J., Palacios, T., IEEE Electron Device Lett. 30, 547 (2009).CrossRefGoogle Scholar
58.Lin, Y.-M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.-Y., Grill, A., Avouris, Ph., Science 327, 662 (2010).CrossRefGoogle Scholar
59.Nakata, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S., Phys. Rev. B 54, 17954 (1996).CrossRefGoogle Scholar
60.Son, Y.W., Cohen, M.L., Louie, S.G., Phys. Rev. Lett. 97, 216803 (2006).CrossRefGoogle Scholar
61.Son, Y.W., Cohen, M.L., Louie, S.G., Nature 444, 347 (2006).CrossRefGoogle Scholar
62.Jiao, L.Y., Zhang, L., Wang, X.R., Diankov, G., Dai, H.J., Nature 458, 877 (2009).CrossRefGoogle Scholar
63.Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M., Nature 458, 872 (2009).CrossRefGoogle Scholar
64.Chen, Z.H., Lin, Y.M., Rooks, M.J., Avouris, P., Phys. E 40, 228 (2007).CrossRefGoogle Scholar
65.Han, M.Y., Ozyilmaz, B., Zhang, Y.B., Kim, P., Phys. Rev. Lett. 98, 206805 (2007).CrossRefGoogle Scholar
66.Li, X.L., Wang, X.R., Zhang, L., Lee, S.W., Dai, H.J., Science 319, 1229 (2008).CrossRefGoogle Scholar
67.Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., Dai, H., Phys. Rev. Lett. 100, 206803 (2008).CrossRefGoogle Scholar
68.Sols, F., Guinea, F., Neto, A.H.C., Phys. Rev. Lett. 99, 166803 (2007).CrossRefGoogle Scholar
69.Todd, K., Chou, H.T., Amasha, S., Goldhaber-Gordon, D., Nano Lett. 9, 416 (2009).CrossRefGoogle Scholar
70.Campos, L.C., Manfrinato, V.R., Sanchez-Yamagishi, J.D., Kong, J., Jarillo-Herrero, P., Nano Lett. 9, 2600 (2009).CrossRefGoogle Scholar
71.Ci, L., Xu, Z., Wang, L., Gao, W., Ding, F., Kelly, K., Yakobson, B., Ajayan, P., Nano Res. 1, 116 (2008).CrossRefGoogle Scholar
72.Datta, S.S., Strachan, D.R., Khamis, S.M., Johnson, A.T.C., Nano Lett. 8, 1912 (2008).CrossRefGoogle Scholar
73.Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K., Novoselov, K.S., Science 323, 610 (2009).CrossRefGoogle Scholar
74.Ryu, S., Han, M.Y., Maultzsch, J., Heinz, T.F., Kim, P., Steigerwald, M.L., Brus, L.E., Nano Lett. 8, 4597 (2008).CrossRefGoogle Scholar
75.Lomeda, J.R., Doyle, C.D., Kosynkin, D.V., Hwang, W.-H., Tour, J.M., J. Am. Chem. Soc. 130, 16201 (2008).CrossRefGoogle Scholar
76.Bekyarova, E., Itkis, M.E., Ramesh, P., Berger, C., Sprinkle, M., de Heer, W.A., Haddon, R.C., J. Am. Chem. Soc. 131, 1336 (2009).CrossRefGoogle Scholar
77.Boukhvalov, D.W., Katsnelson, M.I., Lichtenstein, A.I., Phys. Rev. B 77, 035427 (2008).CrossRefGoogle Scholar
78.Novoselov, K., Phys. World 27 (2009).CrossRefGoogle Scholar
79.Sofo, J.O., Chaudhari, A.S., Barber, G.D., Phys. Rev. B 75, 153401 (2007).CrossRefGoogle Scholar
80.Shytov, A.V., Abanin, D.A., Levitov, L.S., Phys. Rev. Lett. 103, 016806 (2009).CrossRefGoogle Scholar
81.Chernozatonskii, L.A., Sorokin, P.B., Bruning, J.W., Appl. Phys. Lett. 91, 183103 (2007).CrossRefGoogle Scholar
82.McCann, E., Fal′ko, V.I., Phys. Rev. Lett. 96, 086805 (2006).CrossRefGoogle Scholar
83.Novoselov, K.S., McCann, E., Morozov, S.V., Fal′ko, V.I., Katsnelson, M.I., Zeitler, U., Jiang, D., Schedin, F., Geim, A.K., Nature Phys. 2, 177 (2006).CrossRefGoogle Scholar
84.Castro, E.V., Novoselov, K.S., Morozov, S.V., Peres, N.M.R., Dos Santos, J., Nilsson, J., Guinea, F., Geim, A.K., Castro Neto, A.H., Phys. Rev. Lett. 99, 216802 (2007).CrossRefGoogle Scholar
85.McCann, E., Phys. Rev. B 74, 161403 (2006).CrossRefGoogle Scholar
86.Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E., Science 313, 951 (2006).CrossRefGoogle Scholar
87.Mak, K.F., Lui, C.H., Shan, J., Heinz, T.F., Phys. Rev. Lett. 102, 256405 (2009).CrossRefGoogle Scholar
88.Zhang, Y.B., Tang, T.T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Shen, Y.R., Wang, F., Nature 459, 820 (2009).CrossRefGoogle Scholar
89.Oostinga, J.B., Heersche, H.B., Liu, X.L., Morpurgo, A.F., Vandersypen, L.M.K., Nat. Mater. 7, 151 (2008).CrossRefGoogle Scholar
90.Zutic, I., Fabian, J., Sarma, S.D., Rev. Mod. Phys. 76, 323 (2004).CrossRefGoogle Scholar
91.Cho, S., Chen, Y.-F., Fuhrer, M.S., Appl. Phys. Lett. 91, 123105 (2007).CrossRefGoogle Scholar
92.Han, W., Pi, K., Bao, W., McCreary, K.M., Li, Y., Wang, W.H., Lau, C.N., Kawakami, R.K., Appl. Phys. Lett. 94, 222109 (2009).CrossRefGoogle Scholar
93.Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H.T., van Wees, B.J., Nature 448, 571 (2007).CrossRefGoogle Scholar
94.Tombros, N., Tanabe, S., Veligura, A., Jozsa, C., Popinciuc, M., Jonkman, H.T., van Wees, B.J., Phys. Rev. Lett. 101, 046601 (2008).CrossRefGoogle Scholar
95.Abedinpour, S.H., Polini, M., MacDonald, A.H., Tanatar, B., Tosi, M.P., Vignale, G., Phys. Rev. Lett. 99, 206802 (2007).CrossRefGoogle Scholar
96.San-Jose, P., Prada, E., McCann, E., Schomerus, H., Phys. Rev. Lett. 102, 247204 (2009).CrossRefGoogle Scholar
97.Min, H., Borghi, G., Polini, M., MacDonald, A.H., Phys. Rev. B 77, 041407 (2008).CrossRefGoogle Scholar
98.Su, J.J., MacDonald, A.H., Nat. Phys. 4, 799 (2008).CrossRefGoogle Scholar
99.Min, H.K., Bistritzer, R., Su, J.J., MacDonald, A.H., Phys. Rev. B 78, 121401 (2008).CrossRefGoogle Scholar
100.Tutuc, E., personal communication.Google Scholar
101.Frank, I.W., Tanenbaum, D.M., Van der Zande, A.M., McEuen, P.L., J. Vac. Sci. Technol. B 25, 2558 (2007).CrossRefGoogle Scholar
102.Bunch, J.S., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., McEuen, P.L., Science 315, 490 (2007).CrossRefGoogle Scholar
103.Blake, P., Brimicombe, P.D., Nair, R.R., Booth, T.J., Jiang, D., Schedin, F., Ponomarenko, L.A., Morozov, S.V., Gleeson, H.F., Hill, E.W., Geim, A.K., Novoselov, K.S., Nano Lett. 8, 1704 (2008).CrossRefGoogle Scholar
104.Schedin, F., Novoselov, K.S., Morozov, S.V., Jiang, D., Hill, E.H., Blake, P., Geim, A.K., Nat. Mater. 6, 652 (2007).CrossRefGoogle Scholar
105.Winter, M., Besenhard, J.O., Spahr, M.E., Novak, P., Adv. Mater. 10, 725 (1998).3.0.CO;2-Z>CrossRefGoogle Scholar
106.Sides, C.R., Croce, F., Young, V.Y., Martin, C.R., Scrosati, B., Electrochem. Solid State Lett. 8, A484 (2005).CrossRefGoogle Scholar
107.Zhang, H., Cao, G.P., Wang, Z.Y., Yang, Y.S., Shi, Z.J., Gu, Z.N., Nano Lett. 8, 2664 (2008).CrossRefGoogle Scholar
108.Zhang, W.M., Hu, J.S., Guo, Y.G., Zheng, S.F., Zhong, L.S., Song, W.G., Wan, L.J., Adv. Mater. 20, 1160 (2008).CrossRefGoogle Scholar
109.Stoller, M.D., Park, S.J., Zhu, Y.W., An, J.H., Ruoff, R.S., Nano Lett. 8, 3498 (2008).CrossRefGoogle Scholar