Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T22:02:03.576Z Has data issue: false hasContentIssue false

Fundamental Studies of Nanometer-Scale Wear Mechanisms

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Fundamental processes of wear include the rupture of single chemical bonds and the displacement of atoms or small clusters by mechanical action. Experimental studies of such processes have become feasible with the development of scanning probe microscopy. The small volume affected in these experiments overlaps with the size scale of large atomistic simulations, making a direct comparison possible. The complexity of real-world wear processes is reduced in most nanometer-scale experiments, for example, by probing surfaces of single crystals or by establishing and maintaining carefully controlled environments, including ultraclean conditions. The studies address the onset and topography of wear, the formation of debris structures, the interplay of mechanical and chemical action, the role of ultrathin films, the role of crystal defects in wear processes, and temporal and thermal effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wetzel, A., Socoliuc, A., Meyer, E., Bennewitz, R., Gnecco, E., Gerber, C., Rev. Sci. Instrum. 76, 103701 (2005).CrossRefGoogle Scholar
2.Kopta, S., Salmeron, M., J. Chem. Phys. 113, 8249 (2000).CrossRefGoogle Scholar
3.Helt, J.M., Batteas, J.D., Langmuir 21, 633 (2005).CrossRefGoogle Scholar
4.Helt, J.M., Batteas, J.D., Langmuir 22, 6130 (2006).CrossRefGoogle Scholar
5.Socoliuc, A., Gnecco, E., Bennewitz, R., Meyer, E., Phys. Rev. B 68, 115416 (2003).CrossRefGoogle Scholar
6.Carpick, R.W., Dai, Q., Ogletree, D.F., Salmeron, M., Tribol. Lett. 5, 91 (1998).CrossRefGoogle Scholar
7.Park, N.-S., Kim, M.-W., Langford, S.C., Dickinson, J.T., Langmuir 12, 4599 (1996).CrossRefGoogle Scholar
8.Sheehan, P.E., Chem. Phys. Lett. 410, 151 (2005).CrossRefGoogle Scholar
9.Such, B., Krok, F., Szymonski, M., Appl. Surf. Sci. 254, 5431 (2008).CrossRefGoogle Scholar
10.Filleter, T., Paul, W., Bennewitz, R., Phys. Rev. B 77, 035430 (2008).CrossRefGoogle Scholar
11.Dickinson, J.T., Klakken, M.L., Miles, M.H., Jensen, L.C., J. Polym. Sci. B: Polym. Phys. 23, 873 (1985).Google Scholar
12.Dickinson, J.T., Langford, S.C., Bandis, C., Dawes, M.L., Kawaguchi, Y., Appl. Surf. Sci. 154–155, 291 (2000).CrossRefGoogle Scholar
13.Fischer, T.E., Annu. Rev. Mater. Sci. 18, 303 (1988).CrossRefGoogle Scholar
14.Nakahara, S., Langford, S.C., Dickinson, J.T., Tribol. Lett. 1, 277 (1995).CrossRefGoogle Scholar
15.Park, N.-S., Kim, M.-W., Langford, S.C., Dickinson, J.T., J. Appl. Phys. 80, 2680 (1996).CrossRefGoogle Scholar
16.Dickinson, J.T., Langford, S.C., Scudiero, L., “Spatial and temporal probes of deformation and fracture at interfaces,” in Mater. Res. Soc. Symp. Proc. 367, Family, F., Sapoval, B., Meakin, P., Wool, R., Eds. (Materials Research Society, Pittsburgh, PA, 1995), pp. 95101.Google Scholar
17.Leach, R., Stevens, F., Dickinson, J.T., Langmuir 19, 10225 (2003).CrossRefGoogle Scholar
18.Stevens, F., Leach, R.N., Langford, S.C., Dickinson, J.T., Langmuir 22, 3320 (2006).CrossRefGoogle Scholar
19.Scudiero, L., Langford, S.C., Dickinson, J.T., Tribol. Lett. 6, 41 (1999).CrossRefGoogle Scholar
20.Hariadi, R., Langford, S.C., Dickinson, J.T., Langmuir 18, 7773 (2002).CrossRefGoogle Scholar
21.McEvoy, A.L., Stevens, F., Langford, S.C., Dickinson, J.T., Langmuir 22, 6931 (2006).CrossRefGoogle Scholar
22.Dickinson, J.T., in Fundamentals of Friction and Wear on the Nanoscale, Gnecco, E., Meyer, E., Eds. (Springer-Verlag, Heidelberg, Germany, 2007), p. 481.CrossRefGoogle Scholar
23.Maw, W., Stevens, F., Langford, S.C., Dickinson, J.T., J. Appl. Phys. 92, 5103 (2002).CrossRefGoogle Scholar
24.Imoto, R., Stevens, F., Langford, S.C., Dickinson, J.T., Appl. Phys. A, published online 3 July 2008, http://dx.doi.org/10.1007/s00339–008-4802-x.CrossRefGoogle Scholar
25.Seidel, H., Csepregi, L., Heuberger, A., Baumgärtel, H., J. Electrochem. Soc. 137, 3612 (1990).CrossRefGoogle Scholar
26.Filleter, T., Maier, S., Bennewitz, R., Phys. Rev. B 73, 155433 (2006).CrossRefGoogle Scholar
27.Gnecco, E., Bennewitz, R., Meyer, E., Phys. Rev. Lett. 88, 215501 (2002).CrossRefGoogle Scholar
28.Zhurkov, S.N., reprinted in: Int. J. Fract. 26, 295 (1984).CrossRefGoogle Scholar
29.Gotsmann, B., Lantz, M.A., Phys. Rev. Lett. 101, 125501 (2008)CrossRefGoogle Scholar
30.Gotsmann, B., Duerig, U.T., Sills, S., Frommer, J., Hawker, C., Nano Lett. 6, 296 (2006).CrossRefGoogle Scholar