Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-03T08:24:13.131Z Has data issue: false hasContentIssue false

From atoms to grains: Transmission electron microscopy of graphene

Published online by Cambridge University Press:  23 November 2012

Pinshane Y. Huang
Affiliation:
School of Applied and Engineering Physics, Cornell University; [email protected]
Jannik C. Meyer
Affiliation:
Physics Department, University of Vienna, Austria; [email protected]
David A. Muller
Affiliation:
School of Applied and Engineering Physics, Cornell University; [email protected]
Get access

Abstract

Recently, transmission electron microscopy (TEM) and related techniques have brought unique insights to graphene research, demonstrating remarkable flexibility in characterizations ranging from atomic ordering to charge distribution. Such TEM studies have helped advance areas including the understanding of graphene growth and the effects of defects and dopants on the mechanical and electrical properties of graphene. Electron microscopy has proved particularly useful in determining the structure of crystals and grain boundaries across six orders of magnitude—from the shapes, arrangements, and stacking sequences of grains to the atomic arrangements at grain boundaries. Meanwhile, graphene is becoming a promising two-dimensional laboratory bench for electron microscopy, for example, turning graphene into a medium for nanosculpting by transforming buckyballs into graphene and vice versa. Finally, graphene has been used as an ultrathin support membrane for TEM, enabling studies of the motion of single atoms, direct imaging of two-dimensional amorphous materials, and even formation of nano-aquaria for imaging bacteria or nanoparticles in liquid media. Rapid developments in the fields of both electron microscopy and graphene will continue to provide a rich ground for future insights.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moran, H. Fernandez, J. Appl. Phys. 31, 1840 (1960).Google Scholar
Johansen, B.V., Micron 6, 165 (1975).Google Scholar
Mitsuishi, T., Nagasaki, H., Uyeda, R., Proc. Jpn. Acad. 27, 86 (1951).CrossRefGoogle Scholar
Hashimoto, H., Uyeda, R., Acta Crystallogr. 10, 143 (1957).CrossRefGoogle Scholar
Dawson, I.M., Follett, E.A.C., Proc. R. Soc. London 253, 390 (1959).Google Scholar
Hedley, J., Nature 188, 44 (1960).CrossRefGoogle Scholar
Beer, M., Highton, P., J. Cell Biol. 14, 499 (1962).CrossRefGoogle Scholar
Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N., Nat. Nanotechnol. 3, 563 (2008).CrossRefGoogle Scholar
Meyer, J.C., Girit, Ç.Ö.Crommie, M., Zettl, A., Appl. Phys. Lett. 92, 123110 (2008).CrossRefGoogle Scholar
Huang, P.Y., Ruiz-Vargas, C.S., van der Zande, A.M., Whitney, W.S., Levendorf, M.P., Kevek, J.W., Garg, S., Alden, J.S., Hustedt, C.J., Zhu, Y., Park, J., McEuen, P.L., Muller, D.A., Nature 469, 389 (2011).CrossRefGoogle Scholar
Pantelic, R.S., Suk, J.W., Magnuson, C.W., Meyer, J.C., Wachsmuth, P., Kaiser, U., Ruoff, R.S., Stahlberg, H., J. Struct. Biol. 174, 234 (2011).CrossRefGoogle Scholar
Regan, W., Alem, N., Alemán, B., Geng, B., Girit, Ç., Maserati, L., Wang, F., Crommie, M., Zettl, A., Appl. Phys. Lett. 96, 113102 (2010).CrossRefGoogle Scholar
Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F., Zettl, A., Nano Lett. 8, 3582 (2008).CrossRefGoogle Scholar
Urban, K.W., Nat. Mater. 8, 260 (2009).CrossRefGoogle Scholar
Muller, D.A., Nat. Mater. 8, 263 (2009).CrossRefGoogle Scholar
Spence, J.C.H., High-Resolution Electron Microscopy (Oxford University Press, Oxford, UK, 2009).Google Scholar
Buseck, P., Cowley, J.M., Eyring, L., High-Resolution Transmission Electron Microscopy and Associated Techniques (Oxford University Press, New York, 1992).Google Scholar
Williams, D.B., Carter, C.B., Transmission Electron Microscopy: A Textbook for Materials Science (Springer, New York, ed. 2, 2009), vols. 14.CrossRefGoogle Scholar
Smith, B.W., Luzzi, D.E., J. Appl. Phys. 90, 3509 (2001).CrossRefGoogle Scholar
Meyer, J.C., Eder, F., Kurasch, S., Skakalova, V., Kotakoski, J., Park, H.J., Roth, S., Chuvilin, A., Eyhusen, S., Benner, G., Krasheninnikov, A.V., Kaiser, U., Phys. Rev. Lett. 108, 196102 (2012).CrossRefGoogle Scholar
Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I.I., Batzill, M., Nat. Nanotechnol. 5, 326 (2010).CrossRefGoogle Scholar
Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S., Phys. Rev. B 54, 17954 (1996).CrossRefGoogle Scholar
Banhart, F., Kotakoski, J., Krasheninnikov, A.V., ACS Nano 5, 26 (2011).CrossRefGoogle Scholar
Kotakoski, J., Meyer, J.C., Kurasch, S., Santos-Cottin, D., Kaiser, U., Krasheninnikov, A.V., Phys. Rev. B 83, 245420 (2011).CrossRefGoogle Scholar
Kim, K., Lee, Z., Regan, W., Kisielowski, C., Crommie, M.F., Zettl, A., ACS Nano 5, 2142 (2011).CrossRefGoogle Scholar
Warner, J.H., Rummeli, M.H., Gemming, T., Buchner, B., Briggs, G.A., Nano Lett. 9, 102 (2009).CrossRefGoogle Scholar
Park, H.J., Meyer, J., Roth, S., Skákalová, V., Carbon 48, 1088 (2010).CrossRefGoogle Scholar
Girit, Ç.Ö., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L., Park, C.-H., Crommie, M.F., Cohen, M.L., Louie, S.G., Zettl, A., Science 323, 1705 (2009).CrossRefGoogle Scholar
Jia, X., Hofmann, M., Meunier, V., Sumpter, B.G., Campos-Delgado, J., Romo-Herrera, J.M., Son, H., Hsieh, Y.-P., Reina, A., Kong, J., Terrones, M., Dresselhaus, M.S., Science 323, 1701 (2009).CrossRefGoogle Scholar
Huang, J.Y., Qi, L., Li, J., Nano Res. 3, 43 (2010).CrossRefGoogle Scholar
Chuvilin, A., Meyer, J.C., Algara-Siller, G., Kaiser, U., New J. Phys. 11, 083019 (2009).CrossRefGoogle Scholar
Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T., Pennycook, S.J., Nature 464, 571 (2010).CrossRefGoogle Scholar
Meyer, J.C., Kurasch, S., Park, H.J., Skakalova, V., Künzel, D., Groß, A., Chuvilin, A., Algara-Siller, G., Roth, S., Iwasaki, T., Starke, U., Smet, J.H., Kaiser, U., Nat. Mater. 10, 209 (2011).CrossRefGoogle Scholar
Wang, H., Wang, Q., Cheng, Y., Li, K., Yao, Y., Zhang, Q., Dong, C., Wang, P., Schwingenschlögl, U., Yang, W., Zhang, X.X., Nano Lett. 12, 141 (2012).CrossRefGoogle Scholar
Suenaga, K., Tencé, M., Mory, C., Colliex, C., Kato, H., Okazaki, T., Shinohara, H., Hirahara, K., Bandow, S., Iijima, S., Science 290, 2280 (2000).CrossRefGoogle Scholar
Suenaga, K., Kobayashi, H., Koshino, M., MRS Bull. 37, 36 (2012).CrossRefGoogle Scholar
Ci, L., Song, L., Jin, C., Jariwala, D., Wu, D., Li, Y., Srivastava, A., Wang, Z.F., Storr, K., Balicas, L., Liu, F., Ajayan, P.M., Nat. Mater. 9, 430 (2010).CrossRefGoogle Scholar
Mkhoyan, K.A., Contryman, A.W., Silcox, J., Stewart, D.A., Eda, G., Mattevi, C., Miller, S., and Chhowalla, M., Nano Lett. 9, 1058 (2009).CrossRefGoogle Scholar
Jeon, K.-J., Lee, Z., Pollak, E., Moreschini, L., Bostwick, A., Park, C.M., Mendelsberg, R., Radmilovic, V., Kostecki, R., Richardson, T.J., Rotenberg, E., ACS Nano 5, 1042 (2011).CrossRefGoogle Scholar
Nair, R.R., Ren, W., Jalil, R., Riaz, I., Kravets, V.G., Britnell, L., Blake, P., Schedin, F., Mayorov, A.S., Yuan, S., Katsnelson, M.I., Cheng, H.-M., Strupinski, W., Bulusheva, L.G., Okotrub, A.V., Grigorieva, I.V., Grigorenko, A.N., Novoselov, K.S., Geim, A.K., Small 6, 2877 (2010).CrossRefGoogle Scholar
Yazyev, O.V., Louie, S.G., Nat. Mater. 9, 806 (2010).CrossRefGoogle Scholar
Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E., Science 313, 951 (2006).CrossRefGoogle Scholar
Lopes dos Santos, J.M.B., Peres, N.M.R., Castro Neto, A.H., Phys. Rev. Lett. 99, 256802 (2007).CrossRefGoogle Scholar
Norimatsu, W., Kusunoki, M., Phys. Rev. B 81, 161410 (2010).CrossRefGoogle Scholar
Gass, M.H., Bangert, U., Bleloch, A.L., Wang, P., Nair, R.R., Geim, A.K., Nat. Nanotechnol. 3, 676 (2008).CrossRefGoogle Scholar
Nelson, F., Diebold, A.C., Hull, R., Microsc. Microanal. 16, 194 (2010).CrossRefGoogle Scholar
Weng, X., Robinson, J.A., Trumbull, K., Cavalero, R., Fanton, M.A., Snyder, D.W., Appl. Phys. Lett. 97, 201905 (2010).CrossRefGoogle Scholar
Norimatsu, W., Kusunoki, M., Chem. Phys. Lett. 468, 52 (2009).CrossRefGoogle Scholar
Norimatsu, W., Kusunoki, M., Physica E 42, 691 (2010).CrossRefGoogle Scholar
Nagase, M., Hibino, H., Kageshima, H., Yamaguchi, H., Nanotechnology 20, 445704 (2009).CrossRefGoogle Scholar
Handa, H., Takahashi, R., Abe, S., Imaizumi, K., Saito, E., Jung, M.-H., Ito, S., Fukidome, H., Suemitsu, M., Jpn. J. Appl. Phys. 50, 04DH02 (2011).CrossRefGoogle Scholar
Colby, R., Yu, Q., Cao, H., Pei, S.S., Stach, E.A., Chen, Y.P., Diamond Relat. Mater. 19, 143 (2010).CrossRefGoogle Scholar
Brown, L., Hovden, R., Huang, P., Wojcik, M., Muller, D.A., Park, J., Nano Lett. 12, 1609 (2012).CrossRefGoogle Scholar
Kim, K., Lee, Z., Malone, B.D., Chan, K.T., Alemán, B., Regan, W., Gannett, W., Crommie, M.F., Cohen, M.L., Zettl, A., Phys. Rev. B 83, 245433 (2011).CrossRefGoogle Scholar
Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S., Nature 446, 60 (2007).CrossRefGoogle Scholar
Yu, Q., Jauregui, L.A., Wu, W., Colby, R., Tian, J., Su, Z., Cao, H., Liu, Z., Pandey, D., Wei, D., Chung, T.F., Peng, P., Guisinger, N.P., Stach, E.A., Bao, J., Pei, S.S., Chen, Y.P., Nat. Mater. 10, 443 (2011).CrossRefGoogle Scholar
Tsen, A.W., Brown, L., Levendorf, M.P., Ghahari, F., Huang, P.Y., Havener, R.W., Ruiz-Vargas, C.S., Muller, D.A., Kim, P., Park, J., Science 336, 1143 (2012).CrossRefGoogle Scholar
Ruiz-Vargas, C.S., Zhuang, H., Garg, S., Huang, P., van der Zande, A.M., McEuen, P.L., Muller, D.A., Hennig, R., Park, J., Nano Lett. 11, 2259 (2011).CrossRefGoogle Scholar
Jauregui, L.A., Cao, H., Wu, W., Yu, Q., Chen, Y. P., Solid State Commun. 151, 1100 (2011).CrossRefGoogle Scholar
Li, X., Magnuson, C.W., Venugopal, A., An, J., Suk, J.W., Han, B., Borysiak, M., Cai, W., Velamakanni, A., Zhu, Y., Fu, L., Vogel, E.M., Voelkl, E., Colombo, L., Ruoff, R.S., Nano Lett. 10, 4328 (2010).CrossRefGoogle Scholar
Robertson, A.W., Bachmatiuk, A., Wu, Y.A., Schaffel, F., Rellinghaus, B., Buchner, B., Rummeli, M.H., Warner, J.H., ACS Nano 5, 6610 (2011).CrossRefGoogle Scholar
Hillier, J., Baker, R.F., J. Appl. Phys. 15, 663 (1944).CrossRefGoogle Scholar
Rez, P., Muller, D.A., Annu. Rev. Mater. Res. 38, 535 (2008).CrossRefGoogle Scholar
Batson, P.E., Phys. Rev. B 48, 2608 (1993).CrossRefGoogle Scholar
Muller, D.A., Kourkoutis, L.F., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N., Krivanek, O.L., Science 319, 1073 (2008).CrossRefGoogle Scholar
Chen, C.H., Silcox, J., Phys. Rev. Lett. 35, 390 (1975).CrossRefGoogle Scholar
Chen, C.H., Silcox, J., Phys. Rev. B 20, 3605 (1979).CrossRefGoogle Scholar
Leapman, R., Fejes, P., Silcox, J., Phys. Rev. B 28, 2361 (1983).CrossRefGoogle Scholar
Egerton, R., Whelan, M., J. Electron Spectrosc. Relat. Phenom. 3, 232 (1974).CrossRefGoogle Scholar
Eberlein, T., Bangert, U., Nair, R.R., Jones, R., Gass, M., Bleloch, A.L., Novoselov, K.S., Geim, A., Briddon, P.R., Phys. Rev. B 77, 233406 (2008).CrossRefGoogle Scholar
Stephan, O., Ajayan, P.M., Colliex, C., Cyrot-Lackmann, F., Sandre, E., Phys. Rev. B 53, 13824 (1996).CrossRefGoogle Scholar
Suenaga, K., Koshino, M., Nature 468, 1088 (2011).CrossRefGoogle Scholar
Gemming, T., Mobus, G., Exner, M., Ernst, F., Ruhle, M., J. Microsc. 190, 89 (1998).CrossRefGoogle Scholar
Deng, B., Marks, L.D., Acta Crystallogr. A 62, 208 (2006).CrossRefGoogle Scholar
Zhao, L., He, R., Rim, K.T., Schiros, T., Kim, K.S., Zhou, H., Gutiérrez, C., Chockalingam, S.P., Arguello, C.J., Pálová, L., Nordlund, D., Hybertsen, M.S., Reichman, D.R., Heinz, T.F., Kim, P., Pinczuk, A., Flynn, G.W., Pasupathy, A.N., Science 333, 999 (2011).CrossRefGoogle Scholar
Hashimoto, A., Suenaga, K., Gloter, A., Urita, K., Iijima, S., Nature 430, 870 (2004).CrossRefGoogle Scholar
Kotakoski, J., Krasheninnikov, A.V., Kaiser, U., Meyer, J. C., Phys. Rev. Lett. 106, 105505 (2011).CrossRefGoogle Scholar
Jin, C., Lan, H., Peng, L., Suenaga, K., Iijima, S., Phys. Rev. Lett. 102, 205501 (2009).CrossRefGoogle Scholar
Fischbein, M.D., Drndić, M., Appl. Phys. Lett. 93, 113107 (2008).CrossRefGoogle Scholar
Warner, J.H., Rümmeli, M.H., Ge, L., Gemming, T., Montanari, B., Harrison, N.M., Büchner, B., Briggs, G.A., Nat. Nanotechnol. 4, 500 (2009).CrossRefGoogle Scholar
Rodriguez-Manzo, J.A., Cretu, O., Banhart, F., ACS Nano 4, 3422 (2010).CrossRefGoogle Scholar
Song, B., Schneider, G.F., Xu, Q., Pandraud, G., Dekker, C., Zandbergen, H., Nano Lett. 11, 2247 (2011).CrossRefGoogle Scholar
Chuvilin, A., Kaiser, U., Bichoutskaia, E., Besley, N.A., Khlobystov, A.N., Nat. Chem. 2, 450 (2010).CrossRefGoogle Scholar
Chuvilin, A., Bichoutskaia, E., Gimenez-Lopez, M.C., Chamberlain, T.W., Rance, G.A., Kuganathan, N., Biskupek, J., Kaiser, U., Khlobystov, A.N., Nat. Mater. 10, 687 (2011).CrossRefGoogle Scholar
Krasheninnikov, A.V., Banhart, F., Nat. Mater. 6, 723 (2007).CrossRefGoogle Scholar
Kim, K., Regan, W., Geng, B., Alemán, B., Kessler, B.M., Wang, F., Crommie, M.F., Zettl, A., Phys. Status Solidi RRL 4, 302 (2010).CrossRefGoogle Scholar
Huang, J., Ding, F., Yakobson, B.I., Lu, P., Qi, L., Li, J., Proc. Natl. Acad. Sci. U.S.A. 106, 10103 (2009).CrossRefGoogle Scholar
Westenfelder, B., Meyer, J.C., Biskupek, J., Algara-Siller, G., Lechner, L.G., Kusterer, J., Kaiser, U., Krill, C.E. III, Kohn, E., Scholz, F., J. Phys. D: Appl. Phys. 44, 055502 (2011).CrossRefGoogle Scholar
Westenfelder, B., Meyer, J.C., Biskupek, J., Kurasch, S., Scholz, F., Krill, C.E. III, Kaiser, U., Nano Lett. 11, 5123 (2011).CrossRefGoogle Scholar
Huang, P.Y., Kurasch, S., Srivastava, A., Skakalova, V., Kotakoski, J., Krasheninnikov, A.V., Hovden, R., Mao, Q., Meyer, J.C., Smet, J., Muller, D.A., Kaiser, U., Nano Lett. 12, 1081 (2012).CrossRefGoogle Scholar
Lebeau, J.M., Findlay, S., Allen, L., Stemmer, S., Phys. Rev. Lett. 100, 206101 (2008).CrossRefGoogle Scholar
Lebeau, J.M., Findlay, S.D., Allen, L.J., Stemmer, S., Nano Lett. 10, 4405 (2010).CrossRefGoogle Scholar
Dobelle, W., Beer, M., J. Cell Biol. 39, 733 (1968).CrossRefGoogle Scholar
Iijima, S., Micron (1969–1983) 8, 41 (1977).CrossRefGoogle Scholar
Mohanty, N., Fahrenholtz, M., Nagaraja, A., Boyle, D., Berry, V., Nano Lett. 11, 1270 (2011).CrossRefGoogle Scholar
Pantelic, R.S., Meyer, J.C., Kaiser, U., Stahlberg, H., Solid State Commun. (2012).Google Scholar
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A., Alivisatos, A.P., Science 336, 61 (2012).CrossRefGoogle Scholar
Pantelic, R.S., Suk, J.W., Hao, Y., Ruoff, R.S., Stahlberg, H., Nano Lett. 11, 4319 (2011).CrossRefGoogle Scholar
Cerf, A., Alava, T., Barton, R.A., Craighead, H.G., Nano Lett. 11, 4232 (2011).CrossRefGoogle Scholar
Nair, R.R., Blake, P., Blake, J.R., Zan, R., Anissimova, S., Bangert, U., Golovanov, A.P., Morozov, S.V., Geim, A.K., Novoselov, K.S., Latychevskaia, T., Appl. Phys. Lett. 97, 153102 (2010).CrossRefGoogle Scholar
Lee, Z., Jeon, K.J., Dato, A., Erni, R., Richardson, T.J., Frenklach, M., Radmilovic, V., Nano Lett. 9, 3365 (2009).CrossRefGoogle Scholar
Meyer, J.C., Girit, Ç.Ö., Crommie, M., Zettl, A., Nature 454, 319 (2008).CrossRefGoogle Scholar
Schaeffel, F., Wilson, M., Warner, J.H., ACS Nano 5, 9428 (2011).CrossRefGoogle Scholar
Cretu, O., Krasheninnikov, A.V., Rodríguez-Manzo, J.A., Sun, L., Nieminen, R.M., Banhart, F., Phys. Rev. Lett. 105, 196102 (2010).CrossRefGoogle Scholar
Gan, Y., Sun, L., Banhart, F., Small 4, 587 (2008).CrossRefGoogle Scholar
Erni, R., Rossell, M.D., Hartel, P., Phys. Rev. B 82, 165443 (2010).CrossRefGoogle Scholar
Zan, R., Bangert, U., Ramasse, Q., Novoselov, K.S., Nano Lett. 11, 1087 (2011).CrossRefGoogle Scholar
Bunch, J.S., Verbridge, S.S., Alden, J.S., van der Zande, A.M., Parpia, J.M., Craighead, H.G., McEuen, P.L., Nano Lett. 8, 2458 (2008).CrossRefGoogle Scholar
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K., Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).CrossRefGoogle Scholar