Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-30T19:35:42.875Z Has data issue: false hasContentIssue false

Flow in Porous Media: Permeability and Displacement Patterns

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Porous media represent a broad class of mesoscopically disordered materials that are important in many industrial processes, mostly involving the transport of fluids. For examples, the flow of oil and water in sedimentary rock determines the producibility of oil reservoirs; diffusion and dispersion of molecules in soil govern the spreading of both fertilizers and contaminants; chemical reactors use porous catalysts to enhance the mixing of reagents; the containment of chemical and nuclear wastes depends on the low permeability of concrete barriers. These are just a few problems familiar to our everyday lives. The study of porous media has traditionally been under the disciplines of chemical, mechanical, and petroleum engineering. Only in recent years has the field begun to attract the interest of physicists. The displacement of one fluid by another in a porous medium is now recognized as one of the archetypal systems for studying the physics of pattern formation and interface growth. Fluids transport is known to involve effects due to the microgeometry of the pores, the connectivity of the pore network, and the wetting properties of the pore surfaces. These are all fundamental scientific issues that require the understanding of the physics and chemistry associated with the porous materials. Tackling these problems requires the collaboration of scientists from many different disciplines. Although much work has been done and a great deal has been learned, many interesting and important issues remain. In an article written five years ago, I gave a pedagogical overview of some of the problems in porous media that captivated my own interest.

Type
Mesoscopic Disorder
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wong, P-z., Phys. Today 41(12) (1988) p. 24.CrossRefGoogle Scholar
2. See, e.g., Koplik, J., Lin, C., and Vermette, M., J. Appl. Phys. 56 (1984) p. 3127.CrossRefGoogle Scholar
3.Johnson, D.L., Koplik, J., and Schwartz, L.M., Phys. Rev. Lett. 57 (1986) p. 2564.CrossRefGoogle Scholar
4.Katz, A.J. and Thompson, A.H., Phys. Rev. B 34 (1986) p. 8179.CrossRefGoogle Scholar
5.Debye, P., Anderson, H.R. Jr., and Brumberger, H., J. Appl. Phys. 26 (1957) p. 679; see also P-z. Wong, Phys. Rev. B 32 (1985) p. 7417.CrossRefGoogle Scholar
6.Wong, P-z. and Cao, Q-z., Phys. Rev. B 45 (1992) p. 7627.CrossRefGoogle Scholar
7.Wong, P-z., Koplik, J., and Tomanic, J.P., Phys. Rev. B 30 (1984) p. 6606.CrossRefGoogle Scholar
8. See, e.g., Kittel, C., Introduction to Solid State Physics, 6th ed. (Wiley & Sons, New York, 1986).Google Scholar
9.Halperin, B.I., Feng, S., and Sen, P.N., Phys. Rev. Lett. 54 (1985) p. 2391.CrossRefGoogle Scholar
10.Berryman, J.G., J. Appl. Phys. 57 (1985) p. 2374; J.G. Berryman and S.C. Blair, J. Appl. Phys. 60 (1986) p. 1930.CrossRefGoogle Scholar
11.Thompson, A.H., Katz, A.J., and Krohn, C.E., Adv. Phys. 36 (1987) p. 625.CrossRefGoogle Scholar
12.Martys, N., Torquato, S., and Bentz, D.P., Phys. Rev. E (1994) in press.Google Scholar
13.Guyon, E., Oger, L., and Plona, T.J., J. Phys. D 20 (1987) p. 1637.Google Scholar
14.de LaRue, R.E. and Tobias, C.W., J. Electrochem. Soc. 106 (1959) p. 827.Google Scholar
15.Seevers, D.O., SPWLA Trans., Paper L (1966).Google Scholar
16.Kenyon, W.E., Day, P.I., Straley, C., and Willemsen, J.F., SPE Paper No. 15643 (1986); J.R. Banavar and L.M. Schwartz, Phys. Rev. Lett. 58 (1987) p. 1411.Google Scholar
17.Sen, P.N., Straley, C., Kenyon, W.E., and Whittingham, M.S., Geophys. 55 (1990) p. 61.CrossRefGoogle Scholar
18.Kleinberg, R.L., Kenyon, W.E., and Mitra, P.P., J. Magn. Resonance (1994) in press.Google Scholar
19.Archie, G.E., AIME Trans. 146 (1942) p. 54.CrossRefGoogle Scholar
20.Li, S.X., Pengra, D.B., and Wong, P-z. (1994) preprint.Google Scholar
21. See e.g., Kortüm, G., Treatise on Electrochemistry, 2nd revised English ed. (Elsevier, Amsterdam, 1965).Google Scholar
22. See e.g., Lenormand, R., Touboul, E., and Zarcone, C., J. Fluid. Mech. 189 (1988) p. 165; R. Lenormand and C. Zarcone, Phys. Rev. Lett. 54 (1985) p. 2226.CrossRefGoogle Scholar
23.Wilkinson, D. and Willemsen, J.F., J. Phys. A 16 (1983) p. 3365.Google Scholar
24. See, e.g., Stauffer, D. and Aharony, A., Introduction to Percolation Theory, 2nd ed. (Taylor & Francis, London, 1992).Google Scholar
25.Wilkinson, D., Phys. Rev. A 30 (1984) p. 520; Phys. Rev. A 34 (1986) p. 1380.CrossRefGoogle Scholar
26.He, S., Kahanda, G.L.M.K.S., and Wong, P-z., Phys. Rev. Lett. 69 (1992) p. 3731.CrossRefGoogle Scholar
27.Koplik, J. and Levine, H., Phys. Rev. B 32 (1985) p. 280.CrossRefGoogle Scholar
28.Fisher, D.S., Grinstein, G., and Khurana, A., Phys. Today 41 (12) (1988) p. 56.CrossRefGoogle Scholar
29.Wong, P-z. and Bray, A.J., Phys. Rev. Lett. 59 (1987) p. 1057 (C).CrossRefGoogle Scholar
30.Grinstein, G. and Ma, S-k., Phys. Rev. B 28 (1983) p. 2588.CrossRefGoogle Scholar
31.Natterman, T., Stepanow, S., Tang, L-h., and Leschhorn, H., J. Physique II-2 (1992) p. 1483; O. Narayan and D.S. Fisher, Phys. Rev. B 48 (1993) p. 7030.CrossRefGoogle Scholar
32.Rubio, M.A., Edwards, C.A., Dougherty, A., and Gollub, J.P., Phys. Rev. Lett. 63 (1989) p. 1685; V.K. Horváth, F. Family, and T. Vicsek, J. Phys. A 24 (1991) p. L25; S.V. Buldyrev, A-L. Barabási, F. Caserta, S. Havlin, H.E. Stanley, and T. Vicsek, Phys. Rev. A 45 (1992) p. R8313.CrossRefGoogle Scholar
33.Martys, N., Robbins, M.O., and Cieplak, M., Phys. Rev. B 44 (1991) p. 12294.CrossRefGoogle Scholar
34.Ji, H. and Robbins, M.O., Phys. Rev. A 44 (1991) p. 2538; Phys. Rev. B 46 (1992) p. 14519.CrossRefGoogle Scholar
35.Kushnick, A.P., Stokes, J.P., and Robbins, M.O. (1993) preprint.Google Scholar
36. See, e.g., Cao, Q-z. and Wong, P-z., Phys. Rev. Lett. 67 (1991) p. 77.CrossRefGoogle Scholar
37. See, e.g., Krug, J. and Spohn, H., in Solids Far from Equilibrium, edited by Godrèche, C. (Cambridge University Press, Cambridge, 1991).Google Scholar
38. See, e.g., Bensimon, D., Kadanoff, L.P., Liang, S., Shraiman, B.I., and Tang, C., Rev. Mod. Phys. 58 (1986) p. 977.CrossRefGoogle Scholar
39.Stokes, J.P., Weitz, D.A., Gollub, J.P., Dougherty, A., Robbins, M.O., Chaikin, P.M., and Lindsay, H.M., Phys. Rev. Lett. 57 (1986) p. 1718; D.A. Weitz, J.P. Stokes, R.C. Ball, an d A.P. Kushnick, Phys. Rev. Lett. 59 (1987) p. 2967.CrossRefGoogle Scholar
40.Wong, P-z. and Lin, J-s., Math. Geology 20 (1988) p. 655.CrossRefGoogle Scholar
41.Gouyet, J-F., Rosso, M., and Sapoval, B., Phys. Rev. B 37 (1988) p. 1832; J.P. Hulin, E. Clment, C. Baudet, J-F. Gouyet, and M. Rosso, Phys. Rev. Lett. 61 (1988) p. 333.CrossRefGoogle Scholar
42.Chaouche, M., Rakotomalala, N., Salin, D., Xu, B., and Yortsos, Y.C.Phys. Rev. E (1994) in press.Google Scholar
43.Birovljev, A., Furuberg, L., Feder, J., Jøssang, T., Måløy, K.J., and Aharony, A., Phys. Rev. Lett. 67 (1991) p. 584.CrossRefGoogle Scholar
44.Frette, V., Feder, J., Jøssang, T., and Meakin, P., Phys. Rev. Lett. 68 (1992) p. 3164.CrossRefGoogle Scholar