Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-01T01:10:41.512Z Has data issue: false hasContentIssue false

Electrolytes for Solid-Oxide Fuel Cells

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Three solid-oxide fuel cell (SOFC) electrolytes, yttria-stabilized zirconia (YSZ), rare-earth–doped ceria (REDC), and lanthanum strontium gallium magnesium oxide (LSGM), are reviewed on their electrical properties, materials compatibility, and mass transport properties in relation to their use in SOFCs. For the fluorite-type oxides (zirconia and ceria), electrical properties and thermodynamic stability are discussed in relation to their valence stability and the size of the host and dopant ions. Materials compatibility with electrodes is examined in terms of physicochemical features and their relationship to the electrochemical reactions. The application of secondary ion mass spectrometry (SIMS) to detect interface reactivity is demonstrated. The usefulness of doped ceria is discussed as an interlayer to prevent chemical reactions at the electrode–electrolyte interfaces and also as an oxide component in Ni–cermet anodes to avoid carbon deposition on nickel surfaces. Finally, the importance of cation diffusivity in LSGM is discussed, with an emphasis on the grain-boundary effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yokokawa, H. and Sakai, N., in Handbook of Fuel Cells, Chapter 13, edited by Vielsich, W., Lamm, A., and Gasteiger, H.A. (John Wiley & Sons, Chichester, U.K., 2003).Google Scholar
2.Yokokawa, H., Sakai, N., Horita, T., Yamaji, K., and Brito, M.E., Electrochemistry 73 (2005) p. 20.CrossRefGoogle Scholar
3.Chadhury, N.S. and Patterson, J.W., J. Electrochem. Soc. 118 (1971) p. 1398.CrossRefGoogle Scholar
4.Kawada, T. and Yokokawa, H., in Electrical Properties of Ionic Solids, edited by Nowotny, J. and Sorrell, C.C. (Trans Tech Publications, Zurich, 1997) p. 187.Google Scholar
5.Yokokawa, H., Fuel Cells—From Fundamentals to Systems 1 (2) (2001) p. 1.Google Scholar
6.Xiong, Y.P., Yamaji, K., Horita, T., Sakai, N., and Yokokawa, H., J. Electrochem. Soc. 151 (2004) p. A407.CrossRefGoogle Scholar
7.Ishihara, T., Matsuda, M., and Takita, Y., J. Am. Chem. Soc. 116 (1994) p. 3801.CrossRefGoogle Scholar
8.Yamaji, K., Horita, T., Ishikawa, M., Sakai, N., Yokokawa, H., and Dokiya, M., in Solid Oxide Fuel Cells V, PV97–40 (The Electrochemical Society, Pennington, N.J., 1997) p. 1041.Google Scholar
9.Kim, J.H. and Yoo, H.I., Solid State Ionics 140 (2001) p. 105.CrossRefGoogle Scholar
10.Yokokawa, H., in Zirconia Engineering Ceramics: Old Challenges—New Ideas, edited by Kisi, Erich (Trans Tech Publications, Zurich, 1998) p. 37.Google Scholar
11.Minervini, L., Zacate, M.O., and Grimes, R.W., Solid State Ionics 116 (2000) p. 339.CrossRefGoogle Scholar
12.Zacate, M.O., Ninervini, L., Bradfield, D.J., and Grimes, R.W., Solid State Ionics 128 (2000) p. 243.CrossRefGoogle Scholar
13.Kilner, J.A., Solid State Ionics 129 (2000) p. 13.CrossRefGoogle Scholar
14.Mogensen, M., Sammes, N.M., and Tompsett, G.A., Solid State Ionics 129 (2000) p. 63.CrossRefGoogle Scholar
15.Yokokawa, H., Horita, T., Sakai, N., Yamaji, K., Brito, M.E., Xiong, Y.-P., and Kishimoto, H., Solid State Ionics 174 (2004) p. 205.CrossRefGoogle Scholar
16.Yokokawa, H., Annu. Rev. Mater. Res. 33 (2003) p. 581.CrossRefGoogle Scholar
17.Yokokawa, H., J. Phase Equilib. 20 (1999) p. 258.CrossRefGoogle Scholar
18.Yokokawa, H., Sakai, N., Kawada, T., and Dokiya, M., J. Electrochem. Soc. 138 (1991) p. 2719.CrossRefGoogle Scholar
19.Horita, T., Yamaji, K., Ishikawa, M., Sakai, N., Yokokawa, H., Kawada, T., and Kato, T., J. Electrochem. Soc. 145 (9) (1998) p. 3196.CrossRefGoogle Scholar
20.Tricker, D.M. and Stobbs, W.M., in High Temperature Electrochemical Behavior of Fast Ion and Mixed Conductors, edited by Poulsen, F.W., Bonamos, N., Linderoth, S., Mogensen, M., and Zachau-Christiansen, B. (Risø National Laboratory, Roskilde, Denmark, 1993) p. 664.Google Scholar
21.Cerva, H., J. Solid State Chem. 120 (1995) p. 175.CrossRefGoogle Scholar
22.Horita, T., Yamaji, K., Sakai, N., Yokokawa, H., and Kawada, T., and Kato, T., Solid State Ionics 127 (2000) p. 55.CrossRefGoogle Scholar
23.Zhang, T.S., Ma, J., Kong, L.B., Chan, S.H., Hing, P., and Kilner, J.A., Solid State Ionics 167 (2004) p. 203.CrossRefGoogle Scholar
24.Kleinlogel, C. and Gauckler, L.J., Solid State Ionics 135 (2000) p. 567.CrossRefGoogle Scholar
25.Sakai, N., Yamaji, K., Horita, T., Yokokawa, H., Hirata, Y., Sameshima, S., Nigara, Y., and Mizusaki, J., Solid State Ionics 125 (1999) p. 325.CrossRefGoogle Scholar
26.Taniguchi, S., Kadowaki, M., Kawamura, H., Yasuo, T., Akiyama, Y., Miyake, Y., and Saitoh, T., J. Power Sources 55 (1995) p. 73.CrossRefGoogle Scholar
27.Matsuzaki, Y. and Yasuda, I., J. Electrochem. Soc. 148 (2001) p. A126.CrossRefGoogle Scholar
28.Horita, T., Yamaji, K., Kato, T., Sakai, N., and Yokokawa, H., J. Power Sources 131 (2004) p. 299.CrossRefGoogle Scholar
29.Huang, K., Feng, M., Goodenough, J.B., and Schmerling, M., J. Electrochem. Soc. 143 (1996) p. 3630.CrossRefGoogle Scholar
30.Huang, K., Wan, J.H., and Goodenough, J.B., J. Electrochem. Soc. 148 (2001) p. A788.CrossRefGoogle Scholar
31.Wolfenstine, J., Solid State Ionics 126 (1999) p. 293.CrossRefGoogle Scholar
32.Martin, M. and Schulz, O., in Solid State Ionics: The Science and Technology of Ions in Motion, edited by Chowdari, B.V.R., Yoo, H.-L., Choi, G.M., and Lee, J.-H. (World Scientific, Singapore, 2004) p. 787.CrossRefGoogle Scholar
33.Yamaji, K., Negishi, H., Horita, T., Sakai, N., and Yokokawa, H., Solid State Ionics 135 (2000) p. 389.CrossRefGoogle Scholar
34.Yokokawa, H., Sakai, N., Kawada, T., and Dokiya, M., Solid State Ionics 52 (1992) p. 43.CrossRefGoogle Scholar