Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T02:11:42.407Z Has data issue: false hasContentIssue false

A Dislocation Model for the Directional Anisotropy of Grain-Boundary Fracture

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

That fracture is governed by processes occurring over a wide range of length scales has been recognized since the earliest developments of modern fracture mechanics. Griffitha's study of the strength of cracked solids 1,2 is perhaps the earliest example of such multiscale thinking, predating by several decades the first attempts to apply atomistically grounded traction-separation laws to fracture (e.g., the Orowan-Gilman model3,4). Griffith recognized the critical condition for crack extension to be a statement of thermodynamic equilibrium of a cracked solid, representing a balance between the mechanical energy decrease upon crack extension and the corresponding increase in energy due to the newly created crack surface. Griffith determined the elastic strain energy of the cracked body using the continuum solution of the stress field about an ellipse5 and recognized that the potential energy associated with the cleavage surfaces of the crack was directly proportional to the surface energy, the latter deriving from the cohesive molecular forces of the solid. The Irwin-Orowan extension of Griffith mechanics to include plastic dissipation,6-9 which is known to occur on the mesoscopic length scale (~1–100 μm), provides yet a further example of multiscale thinking in the early community of fracture researchers. In fact, the interaction of length scales is of central importance in most problems of fracture.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Griffith, A.A., Philos. Trans. R. Soc. London, Ser. A 221 (1921) p. 163.Google Scholar
2.Griffith, A.A., in Proc. 1st Int. Cong. on Applied Mechanics, edited by Biezeno, C.B. and Burgers, J.M. (J. Waltman Jr. Delft,, Netherlands, 1924) p. 55.Google Scholar
3.Orowan, E., Rep. Progr. Phys. 12 (1949) p. 48.Google Scholar
4.Gilman, J.J., J. Appl. Phys. 31 (1960) p. 2208.CrossRefGoogle Scholar
5.Inglis, C.E., Proc. Inst. Naval Architects 55 (1913) p. 219.Google Scholar
6.Orowan, E., Trans. Inst. Engrs. Shipbuilder Scot. 89 (1945) p. 165.Google Scholar
7.Rice, J.R., in Proc. 1st Int. Conf. on Fracture, edited by Yokobori, T., Kawasaki, T., and Swedlow, J.L. (Japanese Society for Strength and Fracture of Materials, Tokyo, Japan, 1966) p. 309.Google Scholar
8.Hondros, E.D. and Seah, M.P., Int. Metal. Rev. 222 (1977) p. 262.Google Scholar
9.Thomson, R., J. Mater. Sci. 13 (1978) p. 128.Google Scholar
10.Frenkel, J., Z. Phys. 37 (1929) p. 572.Google Scholar
11.Kohlhoff, S., Gumbsch, P., and Fischmeister, H.F., Philos. Mag. A 64 (4) (1991) p. 851.Google Scholar
12.Rice, J.R., J. Mech. Phys. Solids 40 (1992) p. 239.CrossRefGoogle Scholar
13.Sun, Y., Beltz, G.E., and Rice, J.R., Mater. Sci. Eng., A 72 (1993) p. 67.Google Scholar
14.Yang, W., Tan, H., and Guo, T., Modell. Simul. Mater. Sci. Eng. 2 (3A) (1994) p. 767.Google Scholar
15.Beltz, G.E. and Freund, L.B., Philos. Mag. A 69 (1994) p. 183.Google Scholar
16.Xu, G., Argon, A.S., and Ortiz, M., Philos. Mag. A 72 (2) (1995) p. 415.CrossRefGoogle Scholar
17.Xu, G., Argon, A.S., and Ortiz, M., Philos. Mag. A 75 (2) (1997) p. 341.Google Scholar
18.Beltz, G.E., Rice, J.R., Shih, C.F., and Xia, L., Acta Mater. 44 (10) (1996) p. 3943.CrossRefGoogle Scholar
19.Lipkin, D.M. and Beltz, G.E., Acta Mater. 44 (4) (1996) p. 1287.CrossRefGoogle Scholar
20.Lipkin, D.M., Clarke, D.R., and Beltz, G.E., Acta Mater. 44 (10) (1996) p. 4051.CrossRefGoogle Scholar
21.Miller, R., Phillips, R., Beltz, G.E., and Ortiz, M., J. Mech. Phys. Solids 46 (1998) p. 1845.Google Scholar
22.Beltz, G.E., Lipkin, D.M., and Fischer, L.L., Phys. Rev. Lett. 82 (1999) p. 4468.CrossRefGoogle Scholar
23.Beltz, G.E. and Fischer, L.L., Philos. Mag. A 79 (6) (1999) p. 1367.Google Scholar
24.Wang, J.-S. and Anderson, P.M., Acta Metall. Mater. 39 (5) (1991) p. 779.CrossRefGoogle Scholar
25.Riedle, J., Gumbsch, P., and Fischmeister, H.F., Phys. Rev. Lett. 76 (19) (1996) p. 3594.Google Scholar
26.Herring, C., in Structure and Properies of Solid Surfaces, edited by Gomer, R. and Smith, C.S. (University of Chicago Press, Chicago, 1953) p. 5.Google Scholar
27.Rice, J.R., in Fracture: An Advanced Treatise, Vol. 2, edited by Liebowitz, H. (Academic Press, New York, 1968) p. 191.Google Scholar
28.Rice, J.R., J. Appl. Mech. 35 (1968) p. 379.Google Scholar
29.Thomson, R., Hsieh, C., and Rana, V., J. Appl. Phys. 42 (8) (1971) p. 3154.Google Scholar
30.Fuller, E.R. and Thomson, R., in Proc. 4th Int. Conf. on Fracture, Vol. 3, edited by Taplin, D.M.R. (Pergamon Press, Oxford, 1978) p. 387.Google Scholar
31.Farkas, D., Philos. Mag. Lett. 80 (4) (2000) p. 229.Google Scholar
32.Nabarro, F.R.N., Theory of Crystal Dislocations (Clarendon Press, Oxford, 1967).Google Scholar
33.Hirth, J.P. and Lothe, J., Theory of Dislocations, 2nd ed. (John Wiley & Sons, New York, 1982).Google Scholar
34.Hull, D. and Bacon, D.J., Introduction to Dislocations, 3rd ed. (Pergamon Press, New York, 1984).Google Scholar
35.Thomson, R., in Solid State Physics, edited by Ehrenreich, H. and Turnbull, D. (Academic Press, New York, 1986) p. 1.Google Scholar
36.Kratochvíl, J., Czech. J. Phys. B 11 (1961) p. 324.CrossRefGoogle Scholar
37.Hirth, J.P., Acta Mater. 47 (1) (1999) p. 1.Google Scholar
38.Lin, I.-H. and Hirth, J.P., Philos. Mag. A 50 (6) (1984) p. L43.Google Scholar
39.Zhang, T.-Y. and Li, J.C.M., Acta Metall. Mater. 39 (11) (1991) p. 2739.Google Scholar
40.Peierls, R.E., Proc. Phys. Soc. 52 (1940) p. 23.Google Scholar
41.Nabarro, F.R.N., Proc. Phys. Soc., London 59 (1947) p. 256.CrossRefGoogle Scholar
42.Shewmon, P.G., Transformations in Metals (J.Williams, Jenks, OK, 1983) p. 26.Google Scholar