Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T11:11:04.585Z Has data issue: false hasContentIssue false

The Chemistry and Physics of Semiconductor Nanowires

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The following article is based on the Outstanding Young Investigator Award presentation given by Peidong Yang of the University of California, Berkeley, on April 14, 2004, at the Materials Research Society Spring Meeting in San Francisco.Yang was cited for “innovative synthesis of a broad range of nanowires and nanowireheterostructure materials, and the discovery of optically induced lasing in individual nanowire devices.” One-dimensional nanostructures are of both fundamental and technological interest.They not only exhibit interesting electronic and optical properties associated with their low dimensionality and the quantum confinement effect, but they also represent critical components in potential nanoscale devices. In this article, the vapor–liquid–solid crystal growth mechanism will be briefly introduced for the general synthesis of nanowires of different compositions, sizes, and orientation. Unique properties, including light-emission and thermoelectricity, will be discussed. In addition to the recent extensive studies on “single-component” nanowires, of increasing importance is incorporating different interfaces and controlling doping profiles within individual single-crystalline nanowires. Epitaxial growth plays a significant role in fabricating such nanowire heterostructures. Recent research on superlattice nanowires and other nanostructures with horizontal junctions will be presented. The implication of these heterojunction nanowires in light-emission and energy conversion will be discussed. Ways to assemble these one-dimensional nanostructures will also be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Law, M., Goldberger, J., and Yang, P., Annu. Rev. Mater. Sci. 34 (2004) p. 83.CrossRefGoogle Scholar
2.Wu, Y. and Yang, P., J. Am. Chem. Soc. 123 (2001) p. 3165.CrossRefGoogle Scholar
3.Wu, Y., Yan, H., Huang, M., Messer, B., Song, J., and Yang, P., Chem. Euro. J. 8 (2002) p. 1260.3.0.CO;2-Q>CrossRefGoogle Scholar
4.Huang, M., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P., Science 292 (2001) p. 1897.CrossRefGoogle Scholar
5.Kuykendall, T., Pauzauskie, P.J., Zhang, Y., Goldberger, J., Sirbuly, D., Denlinger, J., and Yang, P., Nature Mater. 3 (2004) p. 528.CrossRefGoogle Scholar
6.Wu, Y., Fan, R., and Yang, P., Nano Lett. 2 (2002) p. 83.CrossRefGoogle Scholar
7.Choi, H., Johnson, J., He, R., Lee, S., Saykally, R., and Yang, P., J. Phys. Chem. B 107 (2003) p. 8721.CrossRefGoogle Scholar
8.He, R., Law, M., Fan, R., Kim, F., and Yang, P., Nano Lett. 2 (2002) p. 1109.Google Scholar
9.Goldberger, J., He, R., Lee, S., Zhang, Y., Yan, H., Choi, H., and Yang, P., Nature 422 (2003) p. 599.CrossRefGoogle Scholar
10.Messer, B., Song, J.H., and Yang, P., J. Am. Chem. Soc. 122 (2000) p. 10232.CrossRefGoogle Scholar
11.Yang, P., Nature 425 (2003) p. 243.CrossRefGoogle Scholar
12.Tao, A., Kim, F., Hess, C., Goldberger, J., He, R., Sun, Y., Xia, Y., and Yang, P., Nano Lett. 3 (2003) p. 1229.CrossRefGoogle Scholar
13.Hicks, L.D. and Dresselhaus, M.S., Phys. Rev. B 47 (1993) p. 12727.CrossRefGoogle Scholar
14.Lin, Y.-M. and Dresselhaus, M.S., Phys. Rev. B 68 075304(2003).CrossRefGoogle Scholar
15.Li, D., Wu, Y., Fan, R., Yang, P., and Majumdar, A., Appl. Phys. Lett. 83 (2003) p. 3186.CrossRefGoogle Scholar
16.Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., and Majumdar, A., Appl. Phys. Lett. 83 (2003) p. 2934.CrossRefGoogle Scholar
17.Johnson, J., Choi, H.J., Knutsen, K.P., Schaller, R.D., Yang, P., and Saykally, R.J., Nature Mater. 1 (2002) p. 101.CrossRefGoogle Scholar
18.Johnson, J., Yan, H., Yang, P., and Saykally, R., J. Phys. Chem. B 107 (2003) p. 8816.Google Scholar
19.Johnson, J., Yan, H., Schaller, R., Saykally, R., and Yang, P., J. Phys. Chem. B 105 (2001) p. 11387.Google Scholar
20.Kind, H., Yan, H., Messer, B., Law, M., and Yang, P., Adv. Mater. 14 (2002) p. 158.3.0.CO;2-W>CrossRefGoogle Scholar
21.Law, M., Sirbuly, D., Johnson, J., Goldberger, J., Saykally, R., and Yang, P., Science 305 (2004) p. 1269.Google Scholar