Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Hieslmair, H
Balasubramanian, S
Istratov, A A
and
Weber, E R
2001.
Gettering simulator: physical basis and algorithm.
Semiconductor Science and Technology,
Vol. 16,
Issue. 7,
p.
567.
Huff, H.R.
2001.
Encyclopedia of Materials: Science and Technology.
p.
8486.
Zhang, Peng
Väinölä, Hele
Istratov, Andrei A.
and
Weber, Eicke R.
2003.
The thermal stability of iron precipitates in silicon after internal gettering.
Physica B: Condensed Matter,
Vol. 340-342,
Issue. ,
p.
1051.
Istratov, Andrei A.
Huber, Walter
and
Weber, Eicke R.
2003.
Modeling of Competitive Gettering of Iron in Silicon Integrated Circuit Technology.
Journal of The Electrochemical Society,
Vol. 150,
Issue. 4,
p.
G244.
Zhang, Peng
Istratov, Andrei A.
Väinölä, Hele
and
Weber, Eicke R.
2003.
Re-Dissolution of Gettered Iron Impurities in Czochralski-Grown Silicon.
Solid State Phenomena,
Vol. 95-96,
Issue. ,
p.
577.
Azevedo, G.de M.
Ridgway, M.C.
Betlehem, J.
Yu, K.M.
Glover, C.J.
and
Foran, G.J.
2003.
EXAFS measurements of metal-decorated nanocavities in Si.
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,
Vol. 199,
Issue. ,
p.
179.
Istratov, A. A.
Huber, W.
and
Weber, E. R.
2004.
Predictive Simulation of Semiconductor Processing.
Vol. 72,
Issue. ,
p.
457.
Lu, D.H.
Jimbo, S.
Fujishima, N.
Wakimoto, S.
and
Ogino, M.
2005.
Gettering effect of high-dose arsenic implantation and boron diffusion on gate oxide integrity in trench isolated high voltage silicon-on -insulator process.
p.
684.
Fiorenza, J.G.
and
del Alamo, J.A.
2005.
RF power performance of an LDMOSFET on high-resistivity SOI.
IEEE Electron Device Letters,
Vol. 26,
Issue. 1,
p.
29.
Park, Jea-Gun
Lee, Gon-Sub
Lee, Jin-Seo
Kurita, Kazunari
and
Furuya, Hisashi
2006.
Extremely proximity gettering for semiconductor devices.
Materials Science and Engineering: B,
Vol. 134,
Issue. 2-3,
p.
249.
Ayad, F
and
Remram, M
2006.
Modelling of Gettering by Mechanical Damage of Metallic Impurities in Silicon.
Chinese Physics Letters,
Vol. 23,
Issue. 11,
p.
3058.
Keyes, Robert W
2006.
Information, computing technology, and quantum computing.
Journal of Physics: Condensed Matter,
Vol. 18,
Issue. 21,
p.
S703.
Kuo, Kwei-Kuan
Emoto, Shunya
Tabuchi, Tomotaka
and
Igami, Yukiko
2006.
DRAM memory electrical yield improvement by backgrinding induced backside damage.
p.
1.
Benouattas, N.
Osmani, L.
Salik, L.
Benazzouz, C.
Benkerri, M.
Bouabellou, A.
and
Halimi, R.
2006.
Epitaxial growth of copper silicides by “bilayer” technique on monocrystalline silicon with and without native SiOx.
Materials Science and Engineering: B,
Vol. 132,
Issue. 3,
p.
283.
Kim, Kwang-Salk
Lee, Sung-Wook
Kang, Hee-Bok
Lee, Bo-Young
and
Park, Su-Moon
2008.
Quantitative Evaluation of Gettering Efficiencies Below 1×10[sup 12] Atoms∕cm[sup 3] in p-Type Silicon Using a [sup 65]Cu Tracer.
Journal of The Electrochemical Society,
Vol. 155,
Issue. 11,
p.
H912.
Lee, Sung-Wook
Lee, Sang-Hak
Hwang, Don-Ha
and
Kang, Hee-Bog
2012.
Quantitative evaluation of gettering efficiencies in device process after p-well formation.
Solid-State Electronics,
Vol. 76,
Issue. ,
p.
30.
Lee, In-Ji
Paik, Ungyu
and
Park, Jea-Gun
2013.
Dependence of nickel gettering on crystalline nature in as-grown Czochralski silicon wafer.
Journal of Crystal Growth,
Vol. 365,
Issue. ,
p.
6.
Kim, Il-Hwan
Park, Jun-Seong
Shim, Tae-Hun
and
Park, Jea-Gun
2017.
Si CMOS Image-Sensors Designed With Hydrogen-Ion Implantation Induced Nanocavities for Enhancing Output Voltage Sensing Margin via Proximity Gettering.
IEEE Transactions on Electron Devices,
Vol. 64,
Issue. 5,
p.
2345.
Nonoda, Noriyuki
and
Sueoka, Koji
2019.
Density Functional Theory Study on Stability of Fe, Cu, and Ni Atoms Near (001) Surface of Si Wafer.
ECS Journal of Solid State Science and Technology,
Vol. 8,
Issue. 10,
p.
P573.
Abu-Safe, Husam H.
Al-Esseili, Razan
Arabasi, Sameer
El-Nasser, Husam
and
Zakaria, Yahya
2021.
Thermally-induced nonlinear optical properties of Ti-Al oxide nano-films with double epsilon-near-zero behavior.
Optical Materials Express,
Vol. 11,
Issue. 2,
p.
412.