Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T16:25:57.719Z Has data issue: false hasContentIssue false

Ab initio-guided design of twinning-induced plasticity steels

Published online by Cambridge University Press:  06 April 2016

Dierk Raabe
Affiliation:
Max-Planck-Institut für Eisenforschung, and RWTCH Aachen University, Germany; [email protected]
Franz Roters
Affiliation:
Max-Planck-Institut für Eisenforschung, Germany; [email protected]
Jörg Neugebauer
Affiliation:
Max-Planck-Institut für Eisenforschung, Germany; email [email protected]
Ivan Gutierrez-Urrutia
Affiliation:
National Institute for Materials Science, Japan; [email protected]
Tilmann Hickel
Affiliation:
Department of Computational Materials Design, Max-Planck-Institut für Eisenforschung, Germany; [email protected]
Wolfgang Bleck
Affiliation:
Steel Institute, RWTH Aachen University, Germany; [email protected]
Jochen M. Schneider
Affiliation:
RWTH Aachen University, Germany; [email protected]
James E. Wittig
Affiliation:
Vanderbilt University, USA; [email protected]
Joachim Mayer
Affiliation:
Central Facility for Electron Microscopy, RWTH Aachen University, and Ernst Ruska-Centre, Forschungszentrum Jülich, Germany; [email protected]
Get access

Abstract

The twinning-induced plasticity effect enables designing austenitic Fe-Mn-C-based steels with >70% elongation with an ultimate tensile strength >1 GPa. These steels are characterized by high strain hardening due to the formation of twins and complex dislocation substructures that dynamically reduce the dislocation mean free path. Both mechanisms are governed by the stacking-fault energy (SFE) that depends on composition. This connection between composition and substructure renders these steels ideal model materials for theory-based alloy design: Ab initio-guided composition adjustment is used to tune the SFE, and thus, the strain-hardening behavior for promoting the onset of twinning at intermediate deformation levels where the strain-hardening capacity provided by the dislocation substructure is exhausted. We present thermodynamic simulations and their use in constitutive models, as well as electron microscopy and combinatorial methods that enable validation of the strain-hardening mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bouaziz, O., Allain, S., Scott, C.P., Cugy, P., Barbier, D., Curr. Opin. Solid State Mater. Sci. 15, 141 (2011).Google Scholar
Gutierrez-Urrutia, I., Raabe, D., Acta Mater. 59, 6449 (2011).Google Scholar
Bouaziz, O., Guelton, N., Mater. Sci. Eng. A 319, 246 (2001).CrossRefGoogle Scholar
Karaman, H., Sehitoglu, H., Beaudoin, A.J., Chumlyakov, Y.I., Maier, H.J., Tome, C.N., Acta Mater. 48, 2031 (2000).CrossRefGoogle Scholar
Yan, F.K., Tao, N.R., Archie, F., Gutierrez-Urrutia, I., Raabe, D., Lu, K., Acta Mater. 81, 487 (2014).Google Scholar
Dancette, S., Delannay, L., Renard, K., Melchior, M.A., Jacques, P.J., Acta Mater. 60, 2135 (2012).CrossRefGoogle Scholar
Marceau, R.K.W., Gutierrez-Urrutia, I., Herbig, M., Moore, K.L., Lozano-Perez, S., Raabe, D., Microsc. Microanal. 19, 1581 (2013).CrossRefGoogle Scholar
Steinmetz, D.R., Jäpel, T., Wietbrock, B., Eisenlohr, P., Gutierrez-Urrutia, I., Saeed-Akbari, A., Hickel, T., Roters, F., Raabe, D., Acta Mater. 61, 494 (2013).CrossRefGoogle Scholar
Raabe, D., Springer, H., Gutierrez-Urrutia, I., Roters, F., Bausch, M., Seol, J.-B., Koyama, M., Choi, P.-P., Tsuzaki, K., JOM 66, 1845 (2014).Google Scholar
Gutierrez-Urrutia, I., Zaefferer, S., Raabe, D., Scr. Mater. 61, 737 (2009).CrossRefGoogle Scholar
Gutierrez-Urrutia, I., Raabe, D., Acta Mater. 60, 5791 (2012).Google Scholar
Rémy, L., Metall. Trans. A 12, 387 (1981).CrossRefGoogle Scholar
Venables, J.A., Deformation Twinning (Gordon & Breach, New York, 1964).Google Scholar
Mahajan, S., Philos. Mag. 23, 781 (1971).Google Scholar
Koyama, M., Akiyama, E., Tsuzaki, K., Raabe, D., Acta Mater. 61, 4607 (2013).Google Scholar
Christian, J.W., Mahajan, S., Prog. Mater. Sci. 39, 1 (1995).Google Scholar
Mahajan, S., Chin, G.Y., Acta Metall. 21, 1353 (1973).Google Scholar
Gutierrez-Urrutia, I., Zaefferer, S., Raabe, D., Mater. Sci. Eng. A 527, 3552 (2010).CrossRefGoogle Scholar
Gutierrez-Urrutia, I., Raabe, D., Scr. Mater. 66, 992 (2012).Google Scholar
Rémy, L., Acta Metall. 26, 443 (1978).CrossRefGoogle Scholar
Pierce, D.T., Jimenez, J.A., Bentley, J., Raabe, D., Oskay, C., Wittig, J.E., Acta Mater. 68, 238 (2014).CrossRefGoogle Scholar
Gutierrez-Urrutia, I., Marceau, R., Herbig, M., Raabe, D., Adv. Mater. Res. 783–786, 755 (2014).Google Scholar
Gutierrez-Urrutia, I., Del Valle, J.A., Zaefferer, S., Raabe, D., J. Mater. Sci. 45, 6604 (2010).CrossRefGoogle Scholar
Gutierrez-Urrutia, I., Raabe, D., Adv. Mater. Res. 783–786, 750 (2014).Google Scholar
Dick, A., Körmann, F., Hickel, T., Neugebauer, J., Phys. Rev. B Condens. Matter 84, 125101 (2011).Google Scholar
Hickel, T., Grabowski, B., Körmann, F., Neugebauer, J., J. Phys. Condens. Matter 24, 053202 (2011).CrossRefGoogle Scholar
Abbasi, A., Dick, A., Hickel, T., Neugebauer, J., Acta Mater. 59, 3041 (2011).CrossRefGoogle Scholar
Hickel, T., Sandlöbes, S., Marceau, R.K.W., Dick, A., Bleskov, I., Neugebauer, J., Raabe, D., Acta Mater. 75, 147 (2014).Google Scholar
Saeed-Akbari, A., Imlau, J., Prahl, U., Bleck, W., Metall. Mater. Trans. A 40A, 3076 (2009).CrossRefGoogle Scholar
Song, W., Ingendahl, T., Bleck, W., Acta Metall. Sin. 27, 546 (2014).CrossRefGoogle Scholar
Dinsdale, A.T., CALPHAD 15, 37 (1991).Google Scholar
Saeed-Akbari, A., Mosecker, L., Schwedt, A., Bleck, W., Metall. Mater. Trans. A 43A, 1688 (2012).Google Scholar
Allain, S., Chateau, J.P., Bouaziz, O., Mater. Sci. Eng. A 387, 143 (2004).CrossRefGoogle Scholar
Adler, P.H., Olsen, G.B., Owen, W.S., Metall. Trans. A 17A, 1725 (1986).CrossRefGoogle Scholar
Oh, B.W., Cho, S.J., Kim, Y.G., Kim, Y.P., Kim, W.S., Hong, S.H., Mater. Sci. Eng. A 197, 147 (1995).Google Scholar
Allain, S., Chateau, J.P., Dahmoun, D., Bouaziz, O., Mater. Sci. Eng. A 387, 272 (2004).CrossRefGoogle Scholar
Renard, K., Ryelandt, S., Jacques, P.J., Mater. Sci. Eng. A 527, 2969 (2010).Google Scholar
Park, K.T., Kim, G., Sung, K.K., Lee, S.W., Hwang, S.W., Lee, C.S., Met. Mater. Int. 16, 1 (2010).CrossRefGoogle Scholar
Springer, H., Raabe, D., Acta Mater. 60, 4950 (2012).CrossRefGoogle Scholar
Seol, J.-B., Raabe, D., Choi, P., Park, H.-S., Kwak, J.-H., Park, C.-G., Scr. Mater. 68, 348 (2013).CrossRefGoogle Scholar
Gutierrez-Urrutia, I., Raabe, D., Scr. Mater. 68, 343 (2013).Google Scholar
Gutierrez-Urrutia, I., Raabe, D., Mater. Sci. Technol. 30, 1099 (2014).Google Scholar
Herrera, C., Ponge, D., Raabe, D., Acta Mater. 59, 4653 (2011).Google Scholar
Kuzmina, M., Ponge, D., Raabe, D., Acta Mater. 86, 182 (2015).Google Scholar
Dmitrieva, O., Ponge, D., Inden, G., Millán, J., Choi, P., Sietsma, J., Raabe, D., Acta Mater. 59, 364 (2011).Google Scholar
Raabe, D., Ponge, D., Dmitrieva, O., Sander, B., Adv. Eng. Mater. 11, 547 (2009).CrossRefGoogle Scholar
Wen, Y.H., Peng, H.B., Raabe, D., Gutierrez-Urrutia, I., Chen, J., Du, Y.Y., Nat. Commun. 5, 5964 (2014).Google Scholar
Kuzmina, M., Herbig, M., Ponge, D., Sandlöbes, S., Raabe, D., Science 349, 1080 (2015).Google Scholar
Gebhardt, T., Music, D., Takahashi, T., Schneider, J.M., Thin Solid Films 520, 5491 (2012).Google Scholar
Music, D., Takahashi, T., Vitos, L., Asker, C., Abrikosov, I.A., Schneider, J.M., Appl. Phys. Lett. 91, 191904 (2007).Google Scholar
Gebhardt, T., Music, D., Ekholm, M., Abrikosov, I.A., von Appen, J., Dronskowski, R., Wagner, D., Mayer, J., Schneider, J.M., Acta Mater. 59, 1493 (2011).Google Scholar
Reeh, S., Music, D., Gebhardt, T., Kasprzak, M., Jäpel, T., Zaefferer, S., Raabe, D., Richter, S., Schwedt, A., Mayer, J., Wietbrock, B., Hirt, G., Schneider, J.M., Acta Mater. 60, 6025 (2012).Google Scholar
Gebhardt, T., Music, D., Ekholm, M., Abrikosov, I.A., Vitos, L., Dick, A., Hickel, T., Neugebauer, J., Schneider, J.M., J. Phys. Condens. Matter 23, 246003 (2011).Google Scholar
Gebhardt, T., Music, D., Kossmann, D., Ekholm, M., Abrikosov, I.A., Vitos, L., Schneider, J.M., Acta Mater. 59, 3145 (2011).CrossRefGoogle Scholar
Reeh, S., Kasprzak, M., Klusmann, C.D., Stalf, F., Music, D., Ekholm, M., Abrikosov, I.A., Schneider, J.M., J. Phys. Condens. Matter 25, 245401 (2013).Google Scholar
Reeh, S., Music, D., Ekholm, M., Abrikosov, I.A., Schneider, J.M., Phys. Rev. B Condens. Matter 87, 224103 (2013).Google Scholar
Staunton, J., Gyorffy, B.L., Pindor, A.J., Stocks, G.M., Winter, H., J. Magn. Magn. Mater. 45, 15 (1984).CrossRefGoogle Scholar
Roters, F., Eisenlohr, P., Kords, C., Tjahjanto, D.D., Diehl, M., Raabe, D., Procedia IUTAM 3, 3 (2012).CrossRefGoogle Scholar
Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., Raabe, D., Acta Mater. 58, 1152 (2010).Google Scholar
Ma, A., Roters, F., Raabe, D., Acta Mater. 54, 2169 (2006).Google Scholar
Roters, F., “Advanced Material Models for the Crystal Plasticity Finite Element Method—Development of a General CPFEM Framework,” Habilitation, RWTH Aachen, Germany (2011).Google Scholar
Gutierrez-Urrutia, I., Zaefferer, S., Raabe, D., JOM 65, 1229 (2013).Google Scholar
Zaefferer, S., Elhami, N.-N., Acta Mater. 75, 20 (2014).CrossRefGoogle Scholar
Gutierrez-Urrutia, I., Raabe, D., Scr. Mater. 69, 53 (2013).Google Scholar
Williams, D.B., Carter, C.B., Transmission Electron Microscopy: A Text Book for Materials Science, 2nd ed. (Springer, New York, 2009).CrossRefGoogle Scholar
Mosecker, L., Pierce, D.T., Schwedt, A., Beighmohamadi, M., Mayer, J., Bleck, W., Wittig, J.E., Mater. Sci. Eng. A 642, 71 (2015).Google Scholar