Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T07:38:54.986Z Has data issue: false hasContentIssue false

Synthesis and characterization of clay nanocomposites based on starch

Published online by Cambridge University Press:  04 November 2019

Verónica Rosendo-González
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Av. Tecnológio S/N, Col. Agrícola Bellavista, C.P. 52149. Metepec, Estado de México, México.
Javier Illescas*
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Av. Tecnológio S/N, Col. Agrícola Bellavista, C.P. 52149. Metepec, Estado de México, México.
María del Carmen Díaz-Nava
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Av. Tecnológio S/N, Col. Agrícola Bellavista, C.P. 52149. Metepec, Estado de México, México.
Yolanda Alvarado-Pérez
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Av. Tecnológio S/N, Col. Agrícola Bellavista, C.P. 52149. Metepec, Estado de México, México.
José Juan García-Sánchez
Affiliation:
Tecnológico Nacional de México/Tecnológico de Estudios Superiores de Jocotitlán. Carretera Toluca-Atlacomulco Km 44.8, Ejido de San Juan y San Agustin, C.P. 50700. Jocotitlán, Estado de México, México.
*
Get access

Abstract

In this work, the synthesis of starch-clay nanocomposites was carried out. For this purpose, natural starch was extracted from rice grains and it was characterized by structural and spectrophotometric techniques. Afterwards, it was used as the polymer matrix for the synthesis of nanocomposites crosslinked with different agents: glycerol, citric acid (CA) and sodium trimetaphosphate (STMP). As a reinforcement phase, a natural Mexican clay from the Montmorillonite-type (Mt), was employed, which was modified with a cationic surfactant, hexadecyltrimethylammonium bromide (HDTMA-Br), in order to exchange cations, present in the interlaminar spaces of the raw clay mineral with those of the cationic surfactant; thus, changing its nature from hydrophilic to hydrophobic. Characterization, of both natural and organo-modified clays, was carried out by means of scanning electron microscopy (SEM), to determine the change in morphology between these two minerals; X-ray diffraction analysis (XRD), to obtain the crystalline structure of the organo-modified clay and that of the raw clay mineral (Mt). Also, the Fourier transform infrared spectroscopy (FTIR) was employed to determine materials spectra, and their thermal stability was evaluated by means of the thermogravimetric analysis (TGA). On the other hand, the synthesis of these nanocomposites was performed using different crosslinking agents, glycerol, CA or STMP, in order to identify the effect of them into the final properties of these materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rana, S., Rana, R.S., Suresh, S., Dig. J. Nanomater. Bios. 12(2), 579 (2017).Google Scholar
Hernández-Hernández, K.A., Illescas, J., Díaz-Nava, M.C., Martínez-Gallegos, S., Muro-Urista, C., Ortega-Aguilar, R.E., Rodríguez-Alba, E., Rivera, E., Appl. Clay Sci. 157, 212 (2018).CrossRefGoogle Scholar
Contreras-Ruiz, J.C., Martínez-Gallegos, S., García-Rivas, J.L., Illescas, J., González-Juárez, J.C., Macedo-Miranda, G., Ordoñez-Regil, E., Int. J. Photoenergy 2019, 1 (2019).Google Scholar
Martínez-Gallegos, S., Illescas, J., González, J.C., Macedo, G., Muro-Urista, C., Díaz-Nava, M.C., Desalin. Water Treat. 62, 360 (2017).CrossRefGoogle Scholar
Martínez-Gallegos, S., Rosano-Ortega, G., González-Juárez, J., Pérez-Armendáriz, B., Vega-Lebrún, C.A., Macedo, G., Illescas, J., Soil Till. Res. 170, 130 (2017).CrossRefGoogle Scholar
Ranđelović, M.S., Zarubica, A.R. and Purenović, M.M., in Composites and Their Applications, edited by Hu, N. (IntechOpen, London, 2012) p. 273.Google Scholar
Remigio-Reyes, G.D., Illescas, J., Díaz-Nava, M.C., MRS Adv. 63(3), 3751 (2018).CrossRefGoogle Scholar
Ortega-Aguirre, S., Díaz-Nava, M.C., Solache-Ríos, M.J., Illescas, J., MRS Adv. 63(3), 3769 (2018).CrossRefGoogle Scholar
Saavedra-Labastida, E., Díaz-Nava, M.C., Illescas, J., Muro, C., Water Air Soil Poll. 230(4), 88 (2019).CrossRefGoogle Scholar
Ramírez-Gómez, J.A., Illescas, J., Díaz-Nava, M.C., Muro-Urista, C., Martínez-Gallegos, S., Rivera, E., Polymers. 11(4), 721 (2019).CrossRefGoogle Scholar
Lopez-Chavez, M.C., Osorio-Revilla, G., Arellano-Cardenas, S., Gallardo-Velazquez, T., Flores-Valle, S.O., Lopez-Cortez, M.S., Rev. Mex. Ing. Quim. 16(3), 793 (2017).Google Scholar
Nourmoradi, H., Avazpour, M., Ghasemian, N., Heidari, M., Moradnejadi, K., Khodarahmi, F., Javaheri, M., Mohammadi Moghadam, F., J. Taiwan Inst Chem E. 59, 244-251 (2016).CrossRefGoogle Scholar
Vega, D., Villar, M.A., Failla, M.D., Vallés, E.M., Polym. Bull. 37(2), 229-235 (1996).CrossRefGoogle Scholar
Goldstein, A., Annor, G., Vamadevan, V., Tetlow, I., Kirkensgaard, J.J.K., Mortensen, K., Blennow, A., Hebelstrup, K.H., Bertoft, E., Int. J. Biol. Macromol. 98, 188-200 (2017).CrossRefGoogle Scholar
Kiseleva, V.I., Krivandin, A.V., Fornal, J., Blaszczak, W., Jelinski, T., Yuryev, V.P., Carbohyd. Res. 340(1), 75-83 (2005).CrossRefGoogle Scholar