Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T11:02:22.522Z Has data issue: false hasContentIssue false

Radiosynthesis of Gold/Albumin Core/shell Nanoparticles for Biomedical Applications

Published online by Cambridge University Press:  06 September 2017

Constanza Y. Flores*
Affiliation:
Laboratorio de Materiales Biotecnológicos – Grupo vinculado al IMBICE – CCT La Plata, Departamento de Ciencia y Tecnología, UNQ, Roque Saenz Peña 352, Bernal, Bs. As, Argentina
Estefania Achilli
Affiliation:
Laboratorio de Materiales Biotecnológicos – Grupo vinculado al IMBICE – CCT La Plata, Departamento de Ciencia y Tecnología, UNQ, Roque Saenz Peña 352, Bernal, Bs. As, Argentina
Mariano Grasselli
Affiliation:
Laboratorio de Materiales Biotecnológicos – Grupo vinculado al IMBICE – CCT La Plata, Departamento de Ciencia y Tecnología, UNQ, Roque Saenz Peña 352, Bernal, Bs. As, Argentina
*
*Corresponding author (Email: [email protected])
Get access

Abstract

Gold/albumin core/shell nanoparticles (Au/AlbNPs) was prepared by a novel aggregation/crosslinking technique and characterized by several spectroscopic and microscopy methods. Albumin, in presence of gold nanoparticles (AuNPs), is aggregated by the addition of ethanol and further stabilized by radiation-induced crosslinking using a 60Co source. Nanoconstructs are characterized to determine size, morphology and optical characteristics. The Au/AlbNPs were prepared in different ethanol and albumins concentrations. Results showed that it is possible to obtain Au/AlbNPs using ethanol 30 %v/v, albumin in different concentrations and an irradiation dose of 10 kGy. Au/AlbNP plasmon peak shifted to 530 nm, keeping the typical plasmon peak shape. The size of Au/AlbNPs is approximately double respect to the naked AuNPs and they show core/shell type morphology. The main amide peaks of albumin in FTIR spectrum can be found in the spectrum of nanoconstructs.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gupta, G. P. and Massagué, J.; “Cancer Metastasis: Building a Framework.” Cell 127(4): 679695. (2006).Google Scholar
van ’t Veer, L.J., Dai, H, van de Vijver, M. J, He, Y. D, Hart, A. A. M, Mao, M., Peterse, H. L, van der Kooy, K, Marton, M. J, Witteveen, A. T, Schreiber, G. J, Kerkhoven, R. M, Roberts, C, Linsley, P. S, Bernards, R and Friend, S. H. “Gene expression profiling predicts clinical outcome of breast cancer.” Nature 415(6871): 530536. (2002).Google Scholar
Dvorak, H. F., Nagy, J. A., Dvorak, J. T. and Dvorak, A. M.. “Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules.” The American Journal of Pathology 133(1): 95109. (1988)Google Scholar
Nagy, J. A., Dvorak, A. M. and Dvorak, H. F.. “Vascular Hyperpermeability, Angiogenesis, and Stroma Generation.” Cold Spring Harbor Perspectives in Medicine 2(2) (2012)CrossRefGoogle Scholar
Petros, R. A. and DeSimone, J. M.. “Strategies in the design of nanoparticles for therapeutic applications.” Nat Rev Drug Discov 9(8): 615627. (2010)Google Scholar
Kumar, C. S.. Nanomaterials for cancer diagnosis, Wiley-VCH Weinheim. (2007)Google Scholar
Nie, X. and Chen, C.. “Au nanostructures: an emerging prospect in cancer theranostics.” Science China Life Sciences 55(10): 872883. (2012)Google Scholar
Janib, S. M., Moses, A. S. and MacKay, J. A.. “Imaging and drug delivery using theranostic nanoparticles.” Advanced Drug Delivery Reviews 62(11): 10521063. (2010)CrossRefGoogle Scholar
Park, S. H., Lee, J. H., Lee, G.-B., Byun, H.-J., Kim, B.-R., Park, C.-Y., Kim, H.-B. and Rho, S. B.. “PDCD6 additively cooperates with anti-cancer drugs through activation of NF-κB pathways.” Cellular Signalling 24(3): 726733. (2012)Google Scholar
Xie, J., Lee, S. and Chen, X.. “Nanoparticle-based theranostic agents.” Advanced Drug Delivery Reviews 62(11): 10641079. (2010)Google Scholar
Achilli, E., Casajus, G., Siri, M., Flores, C., Kadłubowski, S., Alonso, S. d. V and Grasselli, M.. “preparation of protein nanoparticle by dynamic aggregation and ionizing-induced crosslinking.” colloids and surfaces a: physicochemical and engineering aspects 486: 161171(2015)Google Scholar
Soto Espinoza, S. L., Sánchez, M. L., Risso, V, Smolko, E. E. and Grasselli, M. (2012). “Radiation synthesis of seroalbumin nanoparticles.” Radiation Physics and Chemistry 81(9): 14171421.Google Scholar
Frens, G.. “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions.” Nature 241(105): 2022. (1973)Google Scholar
Tsai, D.-H., DelRio, F. W., Keene, A. M., Tyner, K. M., MacCuspie, R. I., Cho, T. J., Zachariah, M. R. and Hackley, V. A. (2011). “Adsorption and Conformation of Serum Albumin Protein on Gold Nanoparticles Investigated Using Dimensional Measurements and in Situ Spectroscopic Methods.” Langmuir 27(6): 24642477.CrossRefGoogle Scholar
Ghosh, S. K. and Pal, T. (2007). “Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications.” Chemical Reviews 107(11): 47974862.CrossRefGoogle Scholar
Link, S. and El-Sayed, M. A. (1999). “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles.” The Journal of Physical Chemistry B 103(21): 42124217 Google Scholar