Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T06:41:51.507Z Has data issue: false hasContentIssue false

Flexible film-based thermoelectric generators

Published online by Cambridge University Press:  06 June 2019

Shuping Lin
Affiliation:
Research Center of Smart Wearable Technology, Institute of Textile and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, China PR
Wei Zeng
Affiliation:
Research Center of Smart Wearable Technology, Institute of Textile and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, China PR
Lisha Zhang
Affiliation:
Research Center of Smart Wearable Technology, Institute of Textile and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, China PR
Xiaoming Tao*
Affiliation:
Research Center of Smart Wearable Technology, Institute of Textile and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, China PR
*
*Corresponding author: [email protected]
Get access

Abstract:

The present work highlights the progress in the field of flexible thermoelectric generator (f-TEGs) fabricated by 3-D printing strategy on the typing paper substrate. In this study, printable thermoelectric paste was developed. The dimension of each planer thermoelectric element is 30mm*4mm with a thickness of 50 μm for P-type Bismuth Tellurium (Bi2Te3)-based/ poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) leg. A single thermoleg with this dimension can generate a voltage of 5.38 mV at a temperature difference of 70 K. The calculated Seebeck Coefficient of a single thermoleg is 76.86 μV/K. This work demonstrates that low-cost printing technology is promising for the fabrication of f-TEGs.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

Zeng, W., Tao, X.M., Lin, S.P., Lee, C., Shi, D.L., Lam, K.H., Huang, B.L., Wang, Q.M., Zhao, Y., Nano Energy, 54 (2018) 163-174.CrossRefGoogle Scholar
Lu, Y., Ding, Y.F., Qiu, Y., Cai, K.F., Yao, Q., Song, H.J., Tong, L., He, J.Q., Chen, L.D., Acs Appl Mater Inter, 11 (2019) 12819-12829.CrossRefGoogle Scholar
Wan, Q.P., Teh, Y.K., Gao, Y., Mok, P.K.T., IEEE T Circuits-I, 64 (2017) 2346-2358.Google Scholar
Wan, Q.P., Mok, P.K.T., Ieee Cust Integr Cir, (2018).Google Scholar
Zhang, L.S., Lin, S.P., Hua, T., Huang, B.L., Liu, S.R., Tao, X.M., Adv Energy Mater, 8 (2018).Google Scholar
Choi, J., Jung, Y., Yang, S.J., Oh, J.Y., Oh, J., Jo, K., Son, J.G., Moon, S.E., Park, C.R., Kim, H., Acs Nano, 11 (2017) 7608-7614.CrossRefGoogle Scholar
Ding, Y.F., Qiu, Y., Cai, K.F., Yao, Q., Chen, S., Chen, L.D., He, J.Q., Nat Commun, 10 (2019).Google Scholar
Li, J.F., Liu, W.S., Zhao, L.D., Zhou, M., Npg Asia Mater, 2 (2010) 152-158.CrossRefGoogle Scholar
He, M., Qiu, F., Lin, Z.Q., Energ Environ Sci, 6 (2013) 1352-1361.CrossRefGoogle Scholar
Kim, S.J., We, J.H., Cho, B.J., Energ Environ Sci, 7 (2014) 1959-1965.CrossRefGoogle Scholar
Khan, Z.U., Bubnova, O., Jafari, M.J., Brooke, R., Liu, X.J., Gabrielsson, R., Ederth, T., Evans, D.R., Andreasen, J.W., Fahlman, M., Crispin, X., J Mater Chem C, 3 (2015) 10616-10623.CrossRefGoogle Scholar
Zhao, D., Martinelli, A., Willfahrt, A., Fischer, T., Bernin, D., Khan, Z.U., Shahi, M., Brill, J., Jonsson, M.P., Fabiano, S., Crispin, X., Nat Commun, 10 (2019).Google Scholar
Venkatasubramanian, R., Siivola, E., Colpitts, T., O’Quinn, B., Nature, 413 (2001) 597-602.CrossRefGoogle Scholar
Deng, R.G., Su, X.L., Hao, S.Q., Zheng, Z., Zhang, M., Xie, H.Y., Liu, W., Yan, Y.G., Wolverton, C., Uher, C., Kanatzidis, M.G., Tang, X.F., Energ Environ Sci, 11 (2018) 1520-1535.CrossRefGoogle Scholar
Park, T., Park, C., Kim, B., Shin, H., Kim, E., Energ Environ Sci, 6 (2013) 788-792.CrossRefGoogle Scholar
Nardes, A.M., Kemerink, M., Janssen, R.A.J., Bastiaansen, J.A.M., Kiggen, N.M.M., Langeveld, B.M.W., van Breemen, A.J.J.M., de Kok, M.M., Adv Mater, 19 (2007) 1196-+.CrossRefGoogle Scholar
Kim, S.L., Choi, K., Tazebay, A., Yu, C., Acs Nano, 8 (2014) 2377-2386.CrossRefGoogle Scholar
Ahmad, K., Wan, C., Al-Eshaikh, M.A., Kadachi, A.N., Appl Surf Sci, 474 (2019) 2-8.CrossRefGoogle Scholar
Juntunen, T., Jussila, H., Ruoho, M., Liu, S.H., Hu, G.H., Albrow-Owen, T., Ng, L.W.T., Howe, R.C.T., Hasan, T., Sun, Z.P., Tittonen, I., Adv Funct Mater, 28 (2018).CrossRefGoogle Scholar
Piao, M.X., Kim, G., Kennedy, G.P., Roth, S., Dettlaff-Weglikowska, U., Phys Status Solidi B, 250 (2013) 2529-2534.CrossRefGoogle Scholar