Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T07:46:18.378Z Has data issue: false hasContentIssue false

Down-Shifting Phosphor Layer Enhancement in Optically Active and Inactive Thin-Film Solar Module Regions

Published online by Cambridge University Press:  11 August 2016

Loucas Tsakalakos*
Affiliation:
GE Global Research, Niskayuna, New York, United States.
David J. Smith
Affiliation:
GE Global Research, Niskayuna, New York, United States.
Joleyn E. Brewer
Affiliation:
GE Global Research, Niskayuna, New York, United States.
Holly A. Comanzo
Affiliation:
GE Global Research, Niskayuna, New York, United States.
Ching-Yeu Wei
Affiliation:
GE Global Research, Niskayuna, New York, United States.
Alok M. Srivastava
Affiliation:
GE Global Research, Niskayuna, New York, United States.
*
Get access

Abstract

The enhancement of photovoltaic efficiency by incorporation of down-shifting phosphor materials in optically active and inactive regions of solar modules is presented. Thin film photovoltaic modules suffer from various optical losses, including front glass reflectance, thermalization loss of absorbed high energy photons, window layer absorption, and the loss of photons to scribe regions. There have been various efforts to improve the performance of solar modules by application of down-shifting (DS), down-converting, and up-converting materials systems. Here we show results towards the development of a low-cost phosphor film system tuned to the solar spectrum and specifically designed for CdTe thin film modules.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Trupke, T., Green, M.A., Wurfel, P., J. Appl. Phys. 92, 1668 (2002).Google Scholar
Hong, B.-C., Kawano, K., Sol. Energy Mater. Sol. Cell 80, 417 (2003).Google Scholar
Svrcek, V., Slaoui, A., Muller, J.-C., Thin Solid Films 451–452, 384 (2004).Google Scholar
Gonza’lez-Dı’az, B., Guerrero-Lemus, R., Haro-Gonza’lez, P., Borchert, D., Herna’ndez- Rodrı’guez, C., Thin Solid Films 511–512, 473 (2006).Google Scholar
Strumpel, C., McCann, M., Beaucarne, G., Arkhipov, V., Slaoui, A., Svrcek, V., del Canizo, C., Tobias, I., Sol. Energy Mater. Sol. Cell 91, 238 (2007).Google Scholar
van Sark, W., De Mello Donega, C., Harkisoen, C., Kinderman, R., van Roosmalen, J., Schropp, R., Lysen, E., in: Proceedings of the 19th EUPVSEC, Paris, 2004.Google Scholar
Gallagher, S.J., Norton, B., Eames, P.C., Solar Energy 81, 813 (2007).Google Scholar
Trupke, T., Green, M.A., Wurfel, P., J. Appl. Phys. 92, 4117 (2002).CrossRefGoogle Scholar
Shalav, A., Richards, B.S., Green, M.A., Sol. Energy Mater. Sol. Cells 91, 829 (2007).Google Scholar
Wang, F., Chatterjee, D.K., Li, Z., Zhang, Y., Fan, X., Wang, M., Nanotechnology 17, 5786 (2006).Google Scholar
Yi, G., Lu, H., Zhao, S., Ge, Y., Yang, W., Chen, D., Guo, L.-H., Nano Lett. 4, 2191 (2004).Google Scholar
De la Rosa, E., Salas, P., Desirena, H., Angeles, C., Rodrı´guez, R.A., Appl. Phys. Lett. 87, 241912 (2005).Google Scholar
Shah, A., et al. . “Photovoltaic technology: the case for thin-film solar cells.” Science 285.5428: 692698 (1999).Google Scholar
Sheng, X., Corcoran, C.J., He, J., Shen, L., Kim, S., Park, J., Nuzzo, R.G., and Rogers, J.A., “Enhanced ultraviolet responses in thin-film InGaP solar cells by down-shifting,” Phys. Chem. Chem. Phys. 15, 2043420437 (2013) [DOI: 10.1039/C3CP54096K]Google Scholar