Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T06:59:24.531Z Has data issue: false hasContentIssue false

A Comparative Study of Un-Modified and Modified Acrylate-SiO2 Nanocomposites

Published online by Cambridge University Press:  05 September 2017

Mireya L. Hernández-Vargas*
Affiliation:
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria D.F.04510, MEXICO. Posgrado de Ingeniería, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria D.F, 04519, MEXICO. Instituto de Ciencias Físicas, UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos, 62210, MEXICO.
Rubén Castillo-Perez
Affiliation:
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria D.F.04510, MEXICO. Posgrado de Ingeniería, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria D.F, 04519, MEXICO. Instituto de Ciencias Físicas, UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos, 62210, MEXICO.
Oscar Hernández-Guerrero
Affiliation:
Facultad de Ciencias Químicas e Ingeniería, Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos, 62209, MEXICO. Instituto de Ciencias Físicas, UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos, 62210, MEXICO.
Bernardo F. Campillo-Illanes
Affiliation:
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria D.F.04510, MEXICO. Instituto de Ciencias Físicas, UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos, 62210, MEXICO.
Osvaldo Flores-Cedillo
Affiliation:
Instituto de Ciencias Físicas, UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos, 62210, MEXICO.
*
Get access

Abstract

Based on the nature of the links and interactions existing at the hybrid interface, hybrid materials can be broadly classified in two main designations: a) Hybrid compounds Class I, that include all systems with electrostatic forces, hydrogen bonding or Van der Waals interactions and b) Hybrid compounds Class II, showing that the inorganic and organic components are linked through strong covalent or ionic-covalent bonds. The physico–chemical properties of nanostructured copolymer acrylates based on butyl acrylate (BA), methyl methacrylate (MMA) and acrylic acid (AA) has been investigated employing un-modified SiO2 (Class I) and modified SiO2 particles (Class II) using 3-(trimethoxysilyl) propyl methacrylate (MPS) as compatibilizing agent. The synthesis was carried out using seeded batch emulsion polymerization system. Metastable nanostructured emulsions containing 1 wt% nanoparticles were obtained. Films casted from the in-situ nanostructured latex exhibited excellent optical transparency suggesting good nanoparticles dispersion. However, the mechanical properties showed by SiO2-MPS nanocomposite, are better than the Class I hybrid compounds. Therefore, SiO2-MPS surface treatment prior to polymerization enhances the physical properties of copolymer BA-MMA-AA film. The mass loss derivative traces for the polyacrylic nanocomposites and the neat polymer obtained by thermogravimetric analysis showed that the onset temperature for thermal decomposition was shifted towards a higher temperature than the neat polyacrylic, indicating the enhancement of thermal stability of the un-modified SiO2 nanocomposite. However, there is a decrease of 40°C in the decomposition temperature for the modified polyacrylic nanocomposite. The results obtained so far have shown that weak Van der Waals and H-bonding interactions may be sufficient to enable improvement of the physical properties of the acrylate nanocomposites.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

RTO Lecture Series, EN-AVT-129-Nanotechnology Aerospace Applications, May 2005. ISBN 92-837-1154-8.Google Scholar
Hussain, F., Hojjati, M., Okamoto, M. and Gorga, R. E., J. Compos. Mater., 40,17, 15111575 (2006).Google Scholar
Gross, S., Camozzo, D., Di Noto, V., Armelao, L. and Tondello, E., Eur. Polym. J. 43, 673696 (2007).Google Scholar
Smart coatings, in: Provder, T., Baghdachi, J. (Eds.), ACS Symposium Series 957, American Chemical Society, Washington DC, 2007.Google Scholar
Fernando, R. H., Nanocomposites and nanostructured coatings: Recent advancements, Nanotechnol. Appl. Coat., Fernando, R. H., Sung, L-P., Eds., ACS Symposium Series 1008, American Chemical Society: Washington, DC (2009), pp. 221.Google Scholar
Wang, X., Wang, L., Su, Q. and Zheng, J., Compos. Sci. Technol. 89, 5260 (2013).Google Scholar
Judeinstein, P. and Sanchez, C., J. Mater. Chem., 6, 4, 511525 (1996).Google Scholar
Zhang, F., Wang, Y. and Chai, C., Polym. Int. 53, 13531359 (2004).Google Scholar
Stober, W. and Fink, A., J. Colloid Interface Sci. 26, 6269 (1968).CrossRefGoogle Scholar
Bourgeat-Lami, E. and Lang, J., J. Colloid Interface Sci. 197, 2, 293308 (1998).Google Scholar
Hernandez-Vargas, M.L., Valerio-Cardenas, C., Flores, O., Campillo, B. and Romo-Uribe, A., Nanocomposite coatings incorporating nanosilica particles into polyacrylics, ACS Polym. Chem.. (2011).Google Scholar
Castillo-Pérez, R. and Romo-Uribe, A., Diseño y construcción de un instrumento para medir ángulo de contacto, Memorias del XVIII Congreso Internacional Anual de la SOMIM, ISBN: 978-607-95309-6-9: 772-779 (2012).Google Scholar
de la Fuente, J.L., Fernández-García, M. and López-Madruga, E., J. Appl. Polym. Sci. 80, 783789 (2001).Google Scholar
Beyler, C. and Hirschler, M. M., Thermal decomposition of polymers, in: DiNenno, P.J. (Ed.), The SFPE Handbook of fire protection engineering (Section 1, Chapter 12), NFPA, Quincy, MA, 1988, pp 1110:1-131.Google Scholar