Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T08:02:30.676Z Has data issue: false hasContentIssue false

Bandgap Engineering of Amorphous Hydrogenated Silicon Carbide

Published online by Cambridge University Press:  07 June 2016

J. A. Guerra*
Affiliation:
Departamento de Ciencias, Sección Física, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Perú Department of Material Science 6, University of Erlangen-Nuremberg, Martenstr. 6, Erlangen 91058, Germany
L. M. Montañez
Affiliation:
Departamento de Ciencias, Sección Física, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Perú
K. Tucto
Affiliation:
Departamento de Ciencias, Sección Física, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Perú
J. Angulo
Affiliation:
Departamento de Ciencias, Sección Física, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Perú
J. A. Töfflinger
Affiliation:
Departamento de Ciencias, Sección Física, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Perú
A. Winnaker
Affiliation:
Department of Material Science 6, University of Erlangen-Nuremberg, Martenstr. 6, Erlangen 91058, Germany
R. Weingärtner
Affiliation:
Departamento de Ciencias, Sección Física, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Perú
*
Get access

Abstract

A simple model to describe the fundamental absorption of amorphous hydrogenated silicon carbide thin films based on band fluctuations is presented. It provides a general equation describing both the Urbach and Tauc regions in the absorption spectrum. In principle, our model is applicable to any amorphous material and it allows the determination of the bandgap. Here we focus on the bandgap engineering of amorphous hydrogenated silicon carbide layers. Emphasis is given on the role of hydrogen dilution during the deposition process and post deposition annealing treatments. Using the conventional Urbach and Tauc equations, it was found that an increase/decrease of the Urbach energy produces a shrink/enhancement of the Tauc-gap. On the contrary, the here proposed model provides a bandgap energy which behaves independently of the Urbach energy.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Liu, F. et al, J. Micromech. Microeng. 20, 035011 (2010).Google Scholar
Fraga, M. A. et al, J. Mater. Sci. Mater. Electron. 19, 835 (2007).Google Scholar
Pushpakaran, B. N. et al, Renew. Sust. Energ. Rev. 55, 971 (2016).Google Scholar
Zhu, F. et al, Philos. Mag. 89, 2723 (2009).Google Scholar
Fisher, G. R. and Barnes, P., Philos. Mag. Part B. 61, 217 (1990).Google Scholar
Zhu, F. et al, Philos. Mag. 89, 2723 (2009).Google Scholar
Guerra, J. A. et al, J. Phys. D: Appl. Phys. 49, 195102 (2016).Google Scholar
Medeiros, H. S. et al, Surf. Coat. Technol. 206, 1787 (2011).Google Scholar
Tessler, L. R. and Solomon, I., Phys. Rev. B 52, 10962 (1995).CrossRefGoogle Scholar
Tauc, J., Res. Bull. 3, 37 (1968).CrossRefGoogle Scholar
Urbach, F., Phys. Rev. 92, 1324 (1953).Google Scholar
Dunstan, D. J., J. Phys. C: Solid State Phys. 16, L567 (1983).Google Scholar
O’Leary, S. K. and Zukotynski, S., Phys. Rev. B 52, 7795 (1995).Google Scholar
Bickermann, M. et al, Mater. Sci. Forum 49, 353 (2001)Google Scholar
Swanepoel, R., J. Phys. E: Sci. Instrum. 16, 1214 (1983).Google Scholar
O’Leary, S. K. and Zukotynski, S., Phys. Rev. B 51, 4143 (1995).Google Scholar