Published online by Cambridge University Press: 20 February 2017
Bentonite is used as one of the materials for engineered barrier systems in a radioactive waste repository. Since the major clay mineral constituent of bentonite is montmorillonite, its physico-chemical properties are important. Basal spacing of water-saturated Na-montmorillonite is reported to decrease with increasing Na-montmorillonite density. This paper presents a thermodynamic model to calculate change in the interlayer space of Na-montmorillonite based on the relative partial molar Gibbs free energy (dG) of interlayer water as contacted with a solution of an arbitrary salinity (NaCl concentration). Directly change in montmorillonite density (ρdm) against salinity was calculated by the thermodynamic model. The dG of interlayer water as contacted with a solution of an arbitrary salinity can be calculated by dG = dGH2O+ dGS (dGH2O: relative partial molar Gibbs free energy of interlayer water, dGS: that of water in a solution of an arbitrary salinity). The author previously reported an empirical correlation of dGH2O vs. water content for Na-montmorillonite. The dependence of ρdm on salinity was calculated by replacing dGH2O in the empirical correlation with dG. ρdm increased with salinity. Concretely, initially the ρdm-values of 0.5 and 1.0 Mg/m3 increased to 1.05 and 1.16 Mg/m3 under 0.5 m-NaCl, respectively. Interlayer space vs. salinity was estimated based on the measured results of basal spacing vs. ρdm by XRD and the average density of montmorillonite vs. salinity calculated by this model.