Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T07:09:45.804Z Has data issue: false hasContentIssue false

Synthesis and characterization of Ag@ETS-10 core-shell heterostructured photocatalyst for visible light photocatalysis

Published online by Cambridge University Press:  03 July 2020

Emily T. Buttafuoco
Affiliation:
Chemistry and Physics Department, Simmons University, Boston, MA02115
Juliusz Warzywoda
Affiliation:
Materials Characterization Center, Whitacre College of Engineering, Texas Tech University, Lubbock, TX79409, USA
Albert Sacco Jr.
Affiliation:
Department of Chemical Engineering, Texas Tech University, Lubbock, TX79409, USA
Mariam N. Ismail*
Affiliation:
Chemistry and Physics Department, Simmons University, Boston, MA02115
*
*corresponding author: [email protected]; 617-521-2775
Get access

Abstract

Surface modification of Engelhard titanosilicate (ETS-10) with silver (Ag) was carried out in efforts to promote the photocatalytic activity of ETS-10 towards the degradation of methylene blue (MB) under visible light irradiation. The core-shell heterostructure encapsulates the Ag nanoparticles, which would otherwise dislodge from the surface of ETS-10. The Ag@ETS-10 core-shell heterostructured photocatalyst was prepared by the photodeposition of Ag nanoparticles onto ETS-10 crystals to form the Ag-ETS-10 core, followed by secondary growth of ETS-10 shell using the Ag-ETS-10 as seeds. Ag@ETS-10 showed absorption in the visible light region, as well as a red shift in the UV region, compared to the unmodified ETS-10. The extent of shell growth depended on the seeding level. Increasing the seeding level from 1 wt.% to 50 wt.% resulted in a decreased mode of the particle size distribution of the products, and thus a decreased shell thickness. The Ag@ETS-10 photocatalyst grown using 50 wt.% seeding level (i.e., ∼0.1 μm shell) showed higher photocatalytic activity in the photodegradation of MB under visible light irradiation (k = 0.0159 min-1) than the unmodified ETS-10 sample (k = 0.007 min-1). However, the Ag@ETS-10 photocatalyst grown using 1 wt. % seeding levels (i.e., ∼ 0.8 μm shell) showed lower photocatalytic activity compared to the Ag@ETS-10 photocatalyst grown using 50 wt.% seeding level (i.e., ∼ 0.1 μm shell). This was attributed to the suppression of the plasmon resonance peak when a thicker ETS-10 shell was grown around the Ag-ETS-10 core.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rocha, J. and Anderson, M.W., Eur. J. Inorg. Chem. 2000, 801 (2000).3.0.CO;2-E>CrossRefGoogle Scholar
Anderson, M. W., Terasaki, O., Ohsuna, T., Philippou, A., Mackay, S. P., Ferreira, A., Rocha, J., and Lidin, S., Nature 367, 347 (1994).CrossRefGoogle Scholar
Mani, F., Sawada, J.A., Kuznicki, S. M., Micropor. Mesopor. Mat. 204, 43 (2015).CrossRefGoogle Scholar
Shi, M., Avila, A.M., Yang, F., Kuznicki, T.M., and Kuznicki, S.M., Chem. Eng. Sci. 66, 2817 (2011).CrossRefGoogle Scholar
Shi, M., Kim, J., Sawada, J.A., Lam, J., Sarabadan, S., Kuznicki, T.M., and Kuznicki, S. M., AlChE J. 59, 982 (2012).CrossRefGoogle Scholar
Kim, S.D., Magnone, E., Park, J.H., and Ryu, J. Y., J. Porous Mater. 25, 297 (2017).CrossRefGoogle Scholar
Choi, J.H., Kim, S.D., Kwon, Y.J., and Kim, W. J., Micropor. Mesopor. Mat. 96, 157 (2006).CrossRefGoogle Scholar
De Luca, P., Bernaudo, I., Elliani, R., Tagarelli, A., Nagy, J.B., and Macario, A., Materials 11, 2316 (2018).10.3390/ma11112316CrossRefGoogle Scholar
Surolia, P. K., Tayade, R. J., and Jasra, R. V.. Ind. Eng. Chem. Res. 49, 3961 (2010).CrossRefGoogle Scholar
Ji, Z., Ismail, M.N., Callahan, D.M., Warzywoda, J., and Sacco, A. Jr., J. Photochem. Photobio. A 221, 77 (2011).CrossRefGoogle Scholar
Ji, Z., Ismail, M.N., Callahan, D.M., Pandowo, E., Cai, Z., Goodrich, T.L., Ziemer, K.S., and Warzywoda, J., Sacco, A., Appl. Catal. B 102, 323 (2011).CrossRefGoogle Scholar
Uma, S., Rodrigues, S., Martyanov, I.N., and Klabunde, K. J., Micropor. Mesopor. Mat. 67, 181 (2004).CrossRefGoogle Scholar
Koç, M., Galioglu, S., Toffoli, D., Ustunel, H., and Akata, B., J. Phys. Chem. C 118, 27281 (2014).CrossRefGoogle Scholar
Eldewik, A. and Howe, R.F., Micropor. Mesopor. Mat. 48, 65 (2001).10.1016/S1387-1811(01)00331-6CrossRefGoogle Scholar
Anderson, M., Rocha, J., Lin, Z., Philippou, A., Orion, I., and Ferreira, A., Micropor. Mat. 6, 195 (1996).CrossRefGoogle Scholar
Yang, X., Wang, Y., Zhang, L., Fu, H., He, P., Han, D., Lawson, T., and An, X., Catalysts 10, 139 (2020).CrossRefGoogle Scholar
Kubacka, A., Muñoz-Batista, M.J., Ferrer, M., and Fernández-García, M. Appl. Catal. B 140, 680 (2013).CrossRefGoogle Scholar
Eom, E., Jung, J.Y., Shin, Y., Kim, S., Choi, J.H., Lee, E., Jeong, J.H., and Park, I., Nanoscale 6, 226 (2014).CrossRefGoogle Scholar
Xu, H., Li, G., Liu, N., Zhu, K., Zhu, G., and Jin, S., Mater. Lett. 142, 324 (2015).CrossRefGoogle Scholar
Galioğlu, S., Zahmakıran, M., Kalay, Y.E., Özkar, S., and Akata, B., Micropor. Mesopor. Mat. 159, 1 (2012).CrossRefGoogle Scholar
Galioglu, S., Isler, M., Demircioglu, Z., Koc, M., Vocanson, F., Destouches, N., Turan, R., and Akata, B., Micropor. Mesopor. Mat. 196, 136 (2014).CrossRefGoogle Scholar
Shet, A., and Vidya, S.K., J. Sol 127, 67 (2016).Google Scholar
Feng, C., Chen, Z., Li, W., Zhou, J., Sui, Y., Xu, L., and Sun, M., J. Mater. Sci. 29, 9301 (2018).Google Scholar
Wodka, D., Bielańska, E., Socha, R.P., Wodka, M.E., Gurgul, J., Nowak, P., Warszyński, P., and Kumakiri, I., ACS Appl. Mater. 2,1945 (2010).CrossRefGoogle Scholar
Seong, S., Park, I-S., Jung, Y.C., Lee, T., Kim, S.Y., Park, J.S., Ko, J-H., Ahn, J., Mater. Des. 177, 107831 (2019).CrossRefGoogle Scholar
Tian, Y. and Tatsuma, T., J. Am. Chem. Soc. 127, 7632 (2005).CrossRefGoogle Scholar
Bascura, E.B. and Karakurt, I., ChemistrySelect 3, 3141 (2018).CrossRefGoogle Scholar
Zhao, Y., Li, S., Zeng, Y., and Jiang, Y., APL Mater. 3, 086103 (2015).CrossRefGoogle Scholar
Ji, Z., Warzywoda, J., Sacco, A., Micropor. Mesopor. Mat. 81, 201 (2005).CrossRefGoogle Scholar
Lv, L., Su, F., Zhao, X.S., Micropor. Mesopor. Mat. 76, 113 (2004).CrossRefGoogle Scholar
Zhang, T., Oyama, T., Aoshima, A., Hidaka, H., Zhao, J., Serpone, N., Photochem, J.. Photobiol. A: Chem. 140, 163 (2001).CrossRefGoogle Scholar