Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T07:17:43.677Z Has data issue: false hasContentIssue false

Study of the optical properties of dielectric-graphene-dielectric multilayer quasi-periodic structures: Thue-Morse case

Published online by Cambridge University Press:  04 September 2017

I. A. Sustaita-Torres
Affiliation:
Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, 98000, Zacatecas, México.
C. Sifuentes-Gallardo
Affiliation:
Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, 98000, Zacatecas, México.
J. R. Suárez-López
Affiliation:
Unidad Académica de Física, Universidad Autónoma de Zacatecas, 98060, Zacatecas, México.
I. Rodríguez-Vargas
Affiliation:
Unidad Académica de Física, Universidad Autónoma de Zacatecas, 98060, Zacatecas, México.
J. Madrigal-Melchor*
Affiliation:
Unidad Académica de Física, Universidad Autónoma de Zacatecas, 98060, Zacatecas, México.
*
*Corresponding author email: [email protected]
Get access

Abstract:

Potential applications in optoelectronics had generated a great interest on the study of graphene optical properties. Along with this, graphene has exceptional properties such as high mobility and optical transparency, flexibility, mechanical robustness, etc. Due to these properties, graphene could be used in different devices such as transparent conductors, organic light-emitting diodes, photodetectors, touch screens, saturable absorbers and ultrafast lasers. A transfer-matrix method is used in order to calculate graphene optical properties, such as transmission, and absorption in the infrared region. The quasi-periodic structure consists in intercalated graphene sheets between two consecutives dielectrics. The dielectric materials follow the Thue-Morse sequence (ThMo). The graphene sheets are described by the optical conductivity considering interband and intraband transitions. The structure of the spectra depends strongly on the number of sequence generation, width of the different dielectrics and dielectric permittivity. In our case, the infrared region corresponds to a chemical potential greater than kT. In the calculated spectra, the geometrical properties of the Thue-Morse sequence can be observed. We obtain absorption bands well defined.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Geim, A.K. and Novoselov, K.S.., Nature Materials, 2007. 6(3): p. 183191.CrossRefGoogle Scholar
Geim, A.K. and Klim, P., Scientific American, 2008. 298: p. 9097.CrossRefGoogle Scholar
Castro Neto, A.H., et al. ., Review of modern physics, 2009. 18: p. 109162.CrossRefGoogle Scholar
Geim, A.K., Science, 2009. 324(5934): p. 15301534.CrossRefGoogle Scholar
Novoselov, K.S., et al. ., Nature, 2012. 490(7419): p. 192200.CrossRefGoogle Scholar
Bonaccorso, F., et al. ., Nature Photonics, 2010. 4(9): p. 611622.CrossRefGoogle Scholar
Sensale-Rodriguez, B., Journal of Lightwave Technology, 2015. 33(5): p. 11001108.CrossRefGoogle Scholar
Nair, R.R., et al. ., Science, 2008. 320: p. 1308.CrossRefGoogle Scholar
Melorose, J., P. R., and , C. S., Optics of aperiodic structures. Vol. 1. 2015.Google Scholar
Macia, E., Reports on Progress in Physics, 2005. 69(2): p. 397441.CrossRefGoogle Scholar
Moretti, L. and Mozella, V., Optical Thue-Morse System for Nanophotonics Applications, in Optics of aperiodic structures: fundamentals and device applications, Negro, L.D., Editor. 2014, PAN Stanford. p. 179.Google Scholar
Dal Negro, L., et al. ., Applied Physics Letters, 2004. 84(25): p. 51865188.CrossRefGoogle Scholar
Meradi, K.A. and Tayeboun, F.., Journal of Russian Laser Research, 2015. 36(4): p. 364370.CrossRefGoogle Scholar
Boriskina, S.V., Gopinath, A., and Dal Negro, L.., Optics Express, 2008. 16(23): p. 1881318826.CrossRefGoogle Scholar
Peng, R.W., Mazzer, M., and Barnham, K.W.J.., Applied Physics Letters, 2003. 83(4): p. 770772.CrossRefGoogle Scholar
Dal Negro, L., et al. ., Applied Physics Letters, 2005. 86(26): p. 13.CrossRefGoogle Scholar
Tenorio, B.A. and Mora-Ramos, M.E.., Journal of Nano Reseach. 2009. 5: p. 6978.CrossRefGoogle Scholar
Yeh, P., Optical waves in layered media. 2005 , New Jersey: John Wiley & Sons, Inc.Google Scholar
Markos, P. and Soukoulis, C.M.., Wave Propagation, from electrons to photonic crystals and left-handed materials: Princenton, 2008.CrossRefGoogle Scholar
Falkovsky, L.A., Journal of Physics: Conference Series, 2008. 129: p. 012004.Google Scholar
Trabelsi, Y., et al. ., Photonic Sensors, 2013. 3(3): p. 246255.CrossRefGoogle Scholar
Chen, F. and Yang, X.., Physica Status Solidi (B) Basic Research, 2005. 242(12): p. 25092514.CrossRefGoogle Scholar
Coelho, I.P., Vasconcelos, M.S., and Bezerra, C.G.., Physics Letters, Section A: General, Atomic and Solid State Physics, 2010. 374(13-14): p. 15741578.CrossRefGoogle Scholar