Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T07:31:24.331Z Has data issue: false hasContentIssue false

Stress, Hardness and Elastic Modulus of Bismuth Triiodide (BiI3)

Published online by Cambridge University Press:  16 October 2018

Natália F. Coutinho*
Affiliation:
‘Gleb Wataghin’ Institute of Physics, UNICAMP, 13083-859, Campinas-SP, Brazil
Silvia Cucatti
Affiliation:
‘Gleb Wataghin’ Institute of Physics, UNICAMP, 13083-859, Campinas-SP, Brazil
Rafael B. Merlo
Affiliation:
‘Gleb Wataghin’ Institute of Physics, UNICAMP, 13083-859, Campinas-SP, Brazil
Vinicius G. Antunes
Affiliation:
‘Gleb Wataghin’ Institute of Physics, UNICAMP, 13083-859, Campinas-SP, Brazil
Fernando Alvarez
Affiliation:
‘Gleb Wataghin’ Institute of Physics, UNICAMP, 13083-859, Campinas-SP, Brazil
Francisco C. Marques
Affiliation:
‘Gleb Wataghin’ Institute of Physics, UNICAMP, 13083-859, Campinas-SP, Brazil
*
Get access

Abstract

Bismuth triiodide (BiI3) has been studied aiming the development of lead-free photovoltaic materials. It can also be used as X-ray detectors due to the high density of its elements (bismuth and iodine). We investigate the mechanical stress, hardness, and elastic properties of BiI3 thin films deposited by thermal evaporation. The stress was determined by the bending beam technique using the Stoney equation. The films are tensile with stress of approximately 27 MPa. The hardness and the elastic modulus were determined by nanoindentation technique using a Berkovich diamond tip. The hardness of the films is approximately 0.8 GPa and the reduced Young´s modulus is ∼28 GPa for maximum penetration depth of 10% of the film thickness.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lintereur, A. T., Qiu, W., Nino, J. C., and Baciak, J., Nucl. Instrum. Methods Phys. Res., Sect. A 652, 166-169 (2011).CrossRefGoogle Scholar
Fornaro, L., Saucedo, E., Mussio, L., Gancharov, A., and Cuna, A., IEEE Nucl. Sci. Symp. Conf. Rec. 1, 33-37 (2002).Google Scholar
Sellin, P. J., Nucl. Instrum. Methods Phys. Res., Sect. A 563, 1-8, (2006).CrossRefGoogle Scholar
Han, H., Hong, M., Gokhale, S. S., Sinnott, S. B., Jordan, K., Baciak, J. E., and Nino, J. C, J. Phys. Chem. C 118, 3244-3250 (2014).CrossRefGoogle Scholar
National renewable energy laboratory, best research-cell efficiencies chart. Available at https://www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed 13 september 2018).Google Scholar
Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J. and Seok, S.I., Science 348, 12341237 (2015).CrossRefGoogle Scholar
Saliba, M., Matsui, T., Domanski, K., Seo, J.-Y., Ummadisingu, A., Zakeeruddin, S. M., CorreaBaena, J.-P., Tress, W.R., Abate, A., Hagfeldt, A. and Grätzel, M., Science 354, 206209 (2016).CrossRefGoogle Scholar
Bi, D., Tress, W., Dar, M.I., Gao, P., Luo, J., Renevier, C., Schenk, K., Abate, A., Giordano, F., Correa Baena, J.-P, Decoppet, J.-D., Zakeeruddin, S. M., Nazeeruddin, M. K., Grätzel, M. and Hagfeldt, A., Science Advances, 2 (1), e1501170 (2016).CrossRefGoogle Scholar
da Silva Filho, J. M. C. and Marques, F. C., MRS Advances, 3 (32), 1843-1848 (2018).CrossRefGoogle Scholar
McMeekin, D.P., Sadoughi, G., Rehman, W., Eperon, G.E., Saliba, M., Hörantner, M.T., Haghighirad, A., Sakai, N., Korte, L., Rech, B., Johnston, M. B., Herz, L. M. and Snaith, H.J.. Science 351 (6269), 151155 (2016).CrossRefGoogle Scholar
Zeitouny, J., Katz, E. A., Dollet, A. and Vossier, A., Scientific Reports 7, 1766 (2017).CrossRefGoogle Scholar
Fan, Q.H., Chen, C., Liao, X., Xiang, X., Zhang, S., Ingler, W., Adiga, N., Hu, Z., Cao, X., Du, W. and Deng, X., Solar Energy Materials & Solar Cells 94, 13001302 (2010).CrossRefGoogle Scholar
Chambouleyron, I. E., Marques, F.C., Cisneros, J., Alvarez, F., Moehlecke, S., Losch, W., and Pereira, I., J. of Non-Cryst. Solids, 77&78, 1309 (1985).CrossRefGoogle Scholar
Zhou, R., Wan, L., Niu, H., Yang, L., Mao, X., Zhang, Q., Miao, S., Xu, J. and Cao, G., Sol. Energy Mater. Sol. Cells 155, 2029 (2016).CrossRefGoogle Scholar
Brandt, R. E., Kurchin, R. C., Hoye, R. L. Z., Poindexter, J. R., Wilson, M. W.B., Sulekar, S., Lenahan, F., Yen, P. X. T., Stevanovic, V., Nino, J. C., Bawendi, M. G., and Buonassisi, T., J. Phys. Chem. Lett. 6, 4297-4302 (2015).CrossRefGoogle Scholar
Podraza, N. J., Qiu, W., Hinojosa, B. B., Xu, H., Motyka, M. A., Phillpot, S. R., Baciak, J. E., Trolier-McKinstry, S., and Nino, J. C., J. Appl. Phys. 114, 033110 (2013).CrossRefGoogle Scholar
Hamdeh, U. H., Nelson, R. D., Ryan, B. J., Bhattacharjee, U., Petrich, J. W., and Panthani, M. G., Chem. Mater. 28, 65676574 (2016).CrossRefGoogle Scholar
Lehner, A. J., Wang, H., Fabini, D. H., Liman, C. D., Hébert, C.A., Perry, E. E., Wang, M., Bazan, G. C., Chabinyc, M. L., and Seshadri, R., Appl. Phys. Lett. 107, 131109 (2015).CrossRefGoogle Scholar
Hoye, R. L. Z., Brandt, R. E., Osherov, A., Stevanovic, V., Stranks, S. D., Wilson, M. W. B., Kim, H., Akey, A. J., Perkins, J. D., Kurchin, R. C., Poindexter, J. R., Wang, E. N., Bawendi, M. G., Bulovic, V., and Buonassisi, T., Chem. -Eur. J. 22, 26052610 (2016).CrossRefGoogle Scholar
Ran, C., Wu, Z., Xi, J., Yuan, F., Dong, H., Lei, T., He, X., and Hou, X., J. Phys. Chem. Lett. 8, 394400 (2017).CrossRefGoogle Scholar
Zhang, Z., Li, X., Xia, X., Wang, Z., Huang, Z., Lei, B., and Gao, Y., J. Phys. Chem. Lett. 8, 43004307 (2017).CrossRefGoogle Scholar
Coutinho, N.F., Merlo, R. B., Borrero, N.F.V., and Marques, F. C., MRS Advances, 1-4 (2018).CrossRefGoogle Scholar
Poa, C. H., Lacerda, R. G., Cox, D. C., Silva, S. R. P., and Marques, F. C., Appl. Phys. Lett. 81 (5), 853-855 (2002).CrossRefGoogle Scholar
Champi, A., Lacerda, R. G. and Marques, F. C., Thin Solid Films, 420-421, 200-204 (2002).CrossRefGoogle Scholar
Stoney, G Gerald. Proc. R. Soc. London, Ser. A 82 (553), 172-175 (1909).CrossRefGoogle Scholar
de Lima, M. M. Jr., Lacerda, R. G., Vilcarromero, J., and Marques, F. C., J. Appl. Phys. 86, 49364942 (1999).CrossRefGoogle Scholar
Oliver, Warren Carl and Pharr, George Mathews. J. Mater. Res., 7(6):15641583, (1992).CrossRefGoogle Scholar
Nason, D. and Keller, L., J. Cryst. Growth 156, 221-226 (1995).CrossRefGoogle Scholar
Abadias, G., Chason, E., Keckes, J., Sebastiani, M., Thompson, G. B., Barthel, E., Doll, G. L., Murray, C. E., Stoessel, C. H., Martinu, L., J. Vac. Sci. Technol., A, 36, 020801 (2018).CrossRefGoogle Scholar
Marques, F. C., Wickboldt, P., Pang, D., Chen, J. H. and Paul, W., J. Appl. Phys. 84, 3118-3124 (1998).CrossRefGoogle Scholar
Johns, P. M., PhD. Thesis, University of Florida, (2017).Google Scholar
Sun, X. X., Li, Y. L., Zhong, G. H., Lu, H. P., Zeng, Z., Phys. B, 407, 735-739 (2012).CrossRefGoogle Scholar