Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T07:59:03.203Z Has data issue: false hasContentIssue false

Possible superconductivity in Bismuth (111) bilayers. Their electronic and vibrational properties from first principles

Published online by Cambridge University Press:  29 January 2018

David Hinojosa-Romero
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Ciudad Universitaria, CDMX, 04510, México.
Isaías Rodriguez
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, Ciudad Universitaria, CDMX, 04510, México
Alexander Valladares*
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, Ciudad Universitaria, CDMX, 04510, México
Renela M. Valladares*
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, Ciudad Universitaria, CDMX, 04510, México
Ariel A. Valladares*
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Ciudad Universitaria, CDMX, 04510, México.
*
*Corresponding Author: Ariel A. Valladares, [email protected]
Get access

Abstract

Using a 72-atom supercell we report ab initio calculations of the electronic and vibrational densities of states for the bismuth (111) bilayers (bismuthene) with periodic boundary conditions and a vacuum of 5 Å, 10 Å and 20 Å. We find that the electronic density of states shows a metallic character at the Fermi level and that the vibrational density of states manifests the expected gap due to the layers. Our results indicate that a vacuum down to 5 Å does not affect the electronic and vibrational structures noticeably. A comparison of present results with those obtained for the Wyckoff structure is displayed. Assuming that the Cooper pairing potential is similar for all phases and structures of bismuth, an estimate of the superconducting transition temperature gives 2.61 K for the bismuth bilayers.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wyckoff, R.W.G., Crystal structures, Volume 1, 2nd ed. (Interscience Publishers, New York, 1963), ISBN: 0 470 96860 5, p. 783.Google Scholar
Moore, J. E., Nature 464, 194198 (2010).CrossRefGoogle Scholar
Hasan, M. Z. and Kane, C. L., Rev. Mod. Phys. 82, 3045 (2010).Google Scholar
Qi, X. L. and Zhang, S. C., Rev. Mod. Phys. 83, 1057 (2011).CrossRefGoogle Scholar
Murakami, S., Phys. Rev. Lett. 97, 236805 (2006).CrossRefGoogle Scholar
Bernevig, B.A., Hughes, T.L., Zhang, S. C., Science 314, 5806, 17571761 (2006).CrossRefGoogle Scholar
Fu, L. and Kane, C.L., Phys. Rev. B 76, 045302 (2007).Google Scholar
Bieniek, M., Wozniak, T. and Potasz, P., Acta Phys. Pol. A 130, 609612 (2016).Google Scholar
Bieniek, M., Woźniak, T. and Potasz, P., J. Phys.: Condens. Matter 29, 155501 (2017).Google Scholar
Mata-Pinzón, Z., Valladares, A.A., Valladares, R.M., Valladares, A., PLoS ONE 11, 120 (2016).CrossRefGoogle Scholar
Valladares, A. A., Rodriguez, I., Hinojosa-Romero, D., Valladares, A., Valladares, R. M., arXiv:1710.08939v1, 2017 (unpublished).Google Scholar
Rodríguez, I., Hinojosa-Romero, D., Valladares, A., Valladares, R. M., Valladares, A. A., 2017, (unpublished).Google Scholar
Bardeen, J., Cooper, L. N., Schrieffer, R. R., Phys. Rev. 108, 11751204 (1957).CrossRefGoogle Scholar
Saraiva, A., arXiv:1709.04520v2, 2017, (unpublished).Google Scholar
Prakash, O., Kumar, A., Thamizhavel, A., Ramakrishnaderstood, S., Science 355, 5255 (2017).Google Scholar
Hinojosa-Romero, D., Rodríguez, I., Mata-Pinzón, Z., Valladares, A., Valladares, R., Valladares, A.A., MRS Advances 2, 9, 499506 (2017).Google Scholar
Dassault Systèmes BIOVIA, BIOVIA Materials Studio, Release 2016-1, San Diego: Dassault Systèmes (2015).Google Scholar
Delley, B., Phys. Rev. B 66, 155125 (2002).Google Scholar
Grimvall, G., Thermophysical Properties of Materials (Elsevier Science B. V., 1999), ISBN: 0 444 82794 3, p. 8992.Google Scholar
DeSorbo, W., J. Phys. Chem. 62, 965967 (1958).Google Scholar