Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T14:59:46.189Z Has data issue: false hasContentIssue false

Nanopores and nanosheets of α-Fe2O3 synthetized by electrochemical anodization and analysed by Raman spectroscopy

Published online by Cambridge University Press:  09 December 2019

L.M.C. Pérez-Pérez
Affiliation:
Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, Adolfo Ruíz Cortines. Veracruz, Ver.
A. Báez-Rodríguez*
Affiliation:
Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, Adolfo Ruíz Cortines. Veracruz, Ver.
L. García-González
Affiliation:
Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, Adolfo Ruíz Cortines. Veracruz, Ver.
J. Hernández-Torres
Affiliation:
Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, Adolfo Ruíz Cortines. Veracruz, Ver.
O. Velázquez-Camilo
Affiliation:
Facultad de Ciencias Químicas, Universidad Veracruzana. Adolfo Ruíz Cortines. Veracruz, Ver.
L. Zamora-Peredo
Affiliation:
Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, Adolfo Ruíz Cortines. Veracruz, Ver.
*
Get access

Abstract:

Nanoparticles and nanopores of iron oxide were synthesized by electrochemical anodization, in an electrolytic medium of ammonium fluoride (NH4F), deionized water and ethylene glycol. After anodization, the Fe foils were annealed at 450 °C for 2 hours. Different anodization times and two concentrations of NH4F (0.1 M and 1.2 M) were evaluated, under static conditions at room temperature. Scanning Electron Microscopy showed nanopores (0.1 M) and nanoparticles (1.2 M). Eight vibration modes characteristic of α-Fe2O3 were found with Raman spectroscopy technique. Relationship between the modes Eu(LO) and 2Eu(LO) was found, therefore, their association with the disorder in the crystalline structure can be determined and it was also found that 2Eu(LO) intensity mode at a concentration of 1.2 M is larger than 0.1 M nanostructures, the FWHM of the A1g mode at 227 cm-1 corresponding to the Fe3+ ions and the Eg at 293 cm-1 mode caused by the O2- ions was also analyzed and founded that the crystalline structure of hematite can be determined by the A1g mode at 227 cm-1.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pawlik, A., Hnida, K., Pocja, R. P. and Wiercigroch, E., Applied Surface Science . 426 , 1048-1093 (2017).CrossRefGoogle Scholar
Xie, K., Li, J., Lai, Y., Lu, W., Zhang, Z., Liu, Y., Zhou, L. and Huang, H., Electrochemistry Communications . 13 , (2011).Google Scholar
Ali, G., Park, Y. G., Hussain, A. and Cho, S. O., Nanotechnology . 30 , (2019).CrossRefGoogle Scholar
Granados, B. L., Tovar, R. S., Fernández, R. M. and Antón, J. G., Solar Energy & Solar Cells . 153, 68-77 (2016).CrossRefGoogle Scholar
Li, J., Balaji, A. and Shan, T. K., Journal of Electron Spectroscopy and Related Phenomena . 220 , 109-113 (2017).CrossRefGoogle Scholar
Granados, B. L., Tovar, R. S., Fernández, R. M. and Antón, J. G., Applied Surface Science . 392, 503-513 (2017).CrossRefGoogle Scholar
Ruhul, A., Palash, B. and Das, B.K.. Journal of Saudi Chemical Society . 21, S170-S178 (2017).Google Scholar
Li, B., Sun, Q., Fan, H., Cheng, M., Shan, A., Cui, Y. and Wang, R.. Nanomaterials . 8 (41), 1-12 (2018).Google Scholar
Granados, B. L., Sánchez, R. S., Fernández, R. M. and Antón, J. G.. Journal of the hydrogen energy. 43, 7923-7937 (2018).CrossRefGoogle Scholar
Prakasam, H. E., Varghese, O. K., Paulose, M., Mor, G. K. and Grimes, C. A.. Nanotechnology. 17 , 4285-4291 (2006).CrossRefGoogle Scholar
Xie, K., Guo, M., Huang, H. and Liu, Y.. Corrosion Science . 88 , 66-75 (2014).CrossRefGoogle Scholar
Ohta, T., Masegi, H. and Noda, K.. Materials Research Bulletin . 99 , 367-376 (2018).CrossRefGoogle Scholar
Zhang, Z., Hossain, Md. F. and Takahashi, T.. Materials Letters . 64 , 435-438 (2010).CrossRefGoogle Scholar
Rozana, M., Razak, K. A., Yew, C. K. and Lockman, Z.. Materials Research Society. 2016.Google Scholar
Rangaraju, R. R., Panday, A., Raja, K. S. and Misra, M.. Journal of Physics D: Applied Physics. 42 , 1-17 (2009).CrossRefGoogle Scholar
Ma, M. D., Wu, H., Deng, Z. Y. and Zhao, X.. Journal of Molecular Liquids. 259, 369-375 (2018).CrossRefGoogle Scholar
Hao, J., Han, M. J., Han, S., Meng, X., Su, T. L. and Wang, Q. K.. Journal of Environmental Sciences. 36, 152-162 (2015).CrossRefGoogle Scholar
Liu, R., Liu, J. F., Zhang, L. Q., Sun, J. F. and Jiang, G. B.. Journal of Materials Chemistri A. 1-10 (2013).Google Scholar
Devi, V., Selvaraj, M., Selvam, P., Ashok, A., Sankar, S. and Dinakaran, K.. Journal of Environmental Chemical Engineering. 5, 4539-4546 (2017).CrossRefGoogle Scholar
Lv, B., Sun, Z., Zhang, J. and Jing, C.. Colloids and Surfaces A: Physicochem. Eng. Aspects. 513 , 234-240 (2017).CrossRefGoogle Scholar
Ji, W., Wang, Y., Tanabe, I., Han, X., Zhao, B. and Ozaki, Y.. Royal Society of Chemistry. 6, 342-348 (2015).Google Scholar
Almeida, T. P., Fay, M., Zhu, Y. and Brown, P. D.., J. Phys. Chem. 113 , 18689-18698 (2009).Google Scholar
Sun, M., Sun, M., Yang, H., Song, W., Nie, Y. and Sun, S.. Ceramics International . 43 , 363-367 (2017).CrossRefGoogle Scholar
Rufus, A., Sreeju, N. and Philip, D.. Journal of Physics and Chemistry of Solids . 124 , 221-234 (2019)CrossRefGoogle Scholar
Joya, M. R., Barba, J. J. and París, E. C.. Revista UIS Ingenierías. 18 (3), 33-38 (2019).CrossRefGoogle Scholar
Asoufi, H. M., Antary, T. M. and Awwad, A. M.. Environmental Nanotechnology, Monitoring & Management. 9 , 107-111 (2018).CrossRefGoogle Scholar
Lassoued, A.., Lassoued, M.., Dkhil, B.., Ammar, S. and Gadri, A., Physica E: Low-dimensional Systems and Nanostructures., 101, (2018).Google Scholar
Nieuwoudt, M.., Comins, J. and Cukrowski, I., J. Raman Spectrosc., 42, (2011).Google Scholar
de la Fuente, D., Alcántara, J., Chico, B., Díaz, I., Jiménez, J.A. and Morcillo, M.. Corrosion Science, 110, (2016).CrossRefGoogle Scholar
Aaron, M. and Heather, C., ACS, APPLIED MATERIALS & INTERFACES., 2, (10), (2010).Google Scholar
Serna, C. J., Rendon, J. L. and Iglesias, J. E.. Spectrochimica Acta., 38 A (7), 797-802 (1982).CrossRefGoogle Scholar
Chernyshova, I.., Hochella, M. and Madden, A.. Physical Chemistry Chemical Physics, 9, (2007).CrossRefGoogle Scholar
Pezzotti, G. and Phys, W. Zhu.. Chemistry Chemical. Physics., 17 (4), 2608-2627, (2015).CrossRefGoogle Scholar