Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T16:28:18.969Z Has data issue: false hasContentIssue false

Microstructure and mechanical properties of Fe–Al–Nb–B alloys

Published online by Cambridge University Press:  02 February 2017

Shahbaz Ahmed Azmi
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Düsseldorf, Germany
Alena Michalcová
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Düsseldorf, Germany
Lucia Senčekova
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Düsseldorf, Germany
Martin Palm*
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Düsseldorf, Germany
*
Get access

Abstract

Doping of Fe–Al–Nb alloys with boron results in precipitation of stable C14 Laves phase Nb(Fe,Al)2 instead of metastable Heusler phase Fe2AlNb as in case of the ternary system. The boron stimulated precipitation of the Laves phase leads to preferential precipitation of the Laves phase along grain boundaries and – with higher supersaturation of Nb in the Fe-Al matrix – to an even distribution of additional precipitates within the grains. Though these microstructures seem to be more favourable than in the boron-free alloys, which show an uneven distribution of rather large Laves phase precipitates, no marked strengthening effect by the Laves phase in the Fe–Al–Nb–B alloys is observed.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Morris, D.G., Intermetallics 6, 753 (1998).Google Scholar
Hardwick, D., Wallwork, G., Rev. High-Temp. Mater. 4, 47 (1978).Google Scholar
Ternary Alloys Vol. 5: Al-Cu-S - Al-Gd-Sn, edited by Petzow, G. and Effenberg, G. (VCH Weinheim1992).Google Scholar
Palm, M., Sauthoff, G., Intermetallics 12, 1345 (2004).Google Scholar
Palm, M., J. Alloys Compd. 465, 173 (2009).CrossRefGoogle Scholar
Prokopcakova, P., Svec, M., Palm, M., Int. J. Mater. Res. 107, 396 (2016).Google Scholar
Morris, D.G., Requejo, L.M., Munoz-Morris, M.A., Intermetallics 13, 862 (2005).Google Scholar
Prymak, O., Stein, F., Intermetallics 18, 1322 (2010).CrossRefGoogle Scholar
Falat, L., Schneider, A., Sauthoff, G., Frommeyer, G., Intermetallics 13, 1256 (2005).Google Scholar
Morris, D.G., Munoz-Morris, M.A., Baudin, C., Acta mater. 52, 2827 (2004).Google Scholar
Morris, D.G. et al., Intermetallics 14, 1204 (2006).Google Scholar
Risanti, D. et al., Intermetallics 13, 1337 (2005).CrossRefGoogle Scholar
Hasemann, G., Schneibel, J.H., George, E.P., Intermetallics 21, 56 (2012).Google Scholar
Li, X., Prokopcakova, P., Palm, M., Mater. Sci. Eng. A 611, 234 (2014).CrossRefGoogle Scholar
Palm, M., Int. J. Mater. Res. 100, 277 (2009).Google Scholar
Dobes, F., Acta Matall. Slovaca 16, 223 (2010).Google Scholar
Krein, R., Palm, M., Heilmaier, M., J. Mater. Res. 24, 3412 (2009).Google Scholar