Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T07:18:17.777Z Has data issue: false hasContentIssue false

Microring Resonators and Silicon Photonics

Published online by Cambridge University Press:  23 May 2016

Fernando Ramiro-Manzano
Affiliation:
Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy.
Stefano Biasi
Affiliation:
Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy.
Martino Bernard
Affiliation:
Centre for Materials and Microsystems, Fondazione Bruno Kessler, Via Santa Croce, 77, I-38123 Trento, Italy.
Mattia Mancinelli
Affiliation:
Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy.
Tatevik Chalyan
Affiliation:
Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy.
Fabio Turri
Affiliation:
Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy.
Mher Ghulinyan
Affiliation:
Centre for Materials and Microsystems, Fondazione Bruno Kessler, Via Santa Croce, 77, I-38123 Trento, Italy.
Massimo Borghi
Affiliation:
Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy.
Alina Samusenko
Affiliation:
Centre for Materials and Microsystems, Fondazione Bruno Kessler, Via Santa Croce, 77, I-38123 Trento, Italy.
Davide Gandolfi
Affiliation:
Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy.
Romain Guider
Affiliation:
Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy.
Alessandro Trenti
Affiliation:
Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy.
Pierre-É. Larré
Affiliation:
INO-CNR BEC Center and Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy.
Laura Pasquardini
Affiliation:
LaBSSAH, Fondazione Bruno Kessler, Via Santa Croce, 77, I-38123 Trento, Italy.
Nikola Prltjaga
Affiliation:
Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy.
Santanu Mana
Affiliation:
Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy.
Iacopo Carusotto
Affiliation:
INO-CNR BEC Center and Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy.
Georg Pucker
Affiliation:
Centre for Materials and Microsystems, Fondazione Bruno Kessler, Via Santa Croce, 77, I-38123 Trento, Italy.
Lorenzo Pavesi*
Affiliation:
Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy.
*
§ (Email: [email protected])
Get access

Abstract

Silicon Photonics is the technological to face the future challenges in data communications and processing. This technology follows the same paradigm as the technological revolution of the integrated circuit industry, that is, the miniaturization and the standardization. One of the most important building blocks in Silicon Photonics is the microresonator, a circular optical cavity, which enables many different passive and active optical functions. Here, we will describe the new physics of the intermodal coupling, which occurs when multi radial mode resonators are coupled to waveguides, and of the optical chaos, which develops in coupled sequence of resonators. In addition, an application of resonators in the label-free biosensing will be discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, J., Gong, Y., Fiorani, M., and Aleksic, S., IEEE Commun. Mag. 53, 140 (2015).CrossRefGoogle Scholar
Kachris, C., Kanonakis, K., and Tomkos, I., IEEE Commun. Mag. 51, 39 (2013).Google Scholar
Pavesi, L. and Guillot, G., Optical interconnects, Springer Series Opti. 119 (2006).Google Scholar
Essiambre, R.-J. and Tkach, R. W., P. IEEE, 100, 1035 (2012).CrossRefGoogle Scholar
Minnesota Internet Traffic Study (MINTS). referenced on: http://www.dtc.umn.edu/mints/ Google Scholar
Agrawal, G. P., “Nonlinear fiber optics”. (Academic Press – 2007).Google Scholar
Essiambre, R.-J. and Tkach, R. W., P. IEEE, 100, 1035 (2012).Google Scholar
Brackett, C. A., IEEE J. Sel. Area Comm. 8, 948 (1990).Google Scholar
Moore, G., Electronics Magazine 38, 114117 (1965).Google Scholar
Plummer, J. D., “Silicon VLSI technology: fundamentals, practice, and modeling”. Pearson (Education – 2009)Google Scholar
Waldrop, M., Nature 530, 144 (2016).Google Scholar
Reed, G. T. and Knights, A. P., “Silicon photonics” (Wiley Online Library – 2008).Google Scholar
Pavesi, L. and Lockwood, D. J., “Silicon photonics, vol. 1”. (Springer Science & Business Media – 2004)Google Scholar
Dai, D. and Bowers, J. E., Nanophotonics, 3, 283 (2014)Google Scholar
The fabrication process of some materials such as III-V semiconductors, for essentially providing light sources an detectors, are not CMOS compatible but are integrated usually as discrete components on the Silicon-based chipGoogle Scholar
Li, Y., Verstuyft, S., Yurtsever, G., Keyvaninia, S., Roelkens, G., Van Thourhout, D., and Baets, R., Appl. Optics, 52, 2145 (2013).Google Scholar
De Vos, K., Bartolozzi, I., Schacht, E., Bienstman, P., and Baets, R., Opt. Express, 15, 7610 (2007)Google Scholar
Myers, F. B. and Lee, L. P., Lab. Chip, 8, 2015 (2008)Google Scholar
Redding, B., Liew, S. F., Sarma, R., and Cao, H., Nat. Photonics, 7, 746 (2013).Google Scholar
Jokerst, N., Royal, M., Palit, S., Luan, L., Dhar, S., and Tyler, T., J. Biophotonics, 212 (2009).Google Scholar
Van Vaerenbergh, T., Fiers, M., Mechet, P., Spuesens, T., Kumar, R., Morthier, G., Schrauwen, B., Dambre, J., and Bienstman, P., Opt. Express, 20, 20292 (2012).Google Scholar
Vandoorne, K., Mechet, P., Van Vaerenbergh, T., Fiers, M., Morthier, G., Verstraeten, D., Schrauwen, B., Dambre, J., and Bienstman, P., Nature Commun. 5, 3541 (2014).Google Scholar
Ramiro-Manzano, F., Prtljaga, N., Pavesi, L., Pucker, G. and Ghulinyan, M., Opt. Express, 20, 22934 (2012).Google Scholar
Mancinelli, M., Borghi, M., Ramiro-Manzano, F., Fedeli, J., and Pavesi, L., Opt. Express, 22, 14505 (2014).Google Scholar
Guider, R., Gandolfi, D., Chalyan, T., Pasquardini, L., Samusenko, A., Pucker, G., Pederzolli, C., Pavesi, L., Sensors. 15, 17300 (2015).Google Scholar
Righini, G. C., Dumeige, Y., _eron, P. F, Ferrari, M., Nunzi Conti, G., Ristic, D., and Soria, S.. Riv. Nuovo Cimento, 34, 435 (2011).Google Scholar
Rabus, D. G.. “Integrated Ring Resonators” (Springer,- 2007).Google Scholar
Yariv, A.. IEEE Photonic. Tech. L. 14, 483, (2002).Google Scholar
Ghulinyan, M., Guider, R., Pucker, G., and Pavesi, L. IEEE Photonic. Tech. L. 23, 1166 (2011)Google Scholar
Ghulinyan, M., Ramiro-Manzano, F., Guider, R., Prtljaga, N., Pucker, G. and Pavesi, L., Proc. SPIE 8431 (2012).Google Scholar
Ramiro-Manzano, F., Prtljaga, N., Pavesi, L., Pucker, G. and Ghulinyan, M., Opt. Letters, 38, 3562 (2013).Google Scholar
Ramiro-Manzano, F., Ghulinyan, M., Prtljaga, N., Pucker, G., Pavesi, L., Proc. SPIE 8600 (2013)Google Scholar
Ramiro-Manzano, F.; Prtljaga, N.; Pavesi, L.; Pucker, G.; Ghulinyan, M., Opt. Express, 20, 22934 (2012)Google Scholar
Ghulinyan, M., Ramiro-Manzano, F., Prtljaga, N., Guider, R., Carusotto, I., Pitanti, A., Pucker, G.; and Pavesi, L., Phys. Rev. Lett. 110, 163901 (2013)CrossRefGoogle Scholar
To be publishedGoogle Scholar
Ghulinyan, M., Ramiro Manzano, F., Prtljaga, N., Bernard, M., Pavesi, L., Pucker, G. and Carusotto, I., Phys. Rev. A 90, 053811 (2014)Google Scholar
Almeida, V. R. and Lipson, M., “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387 (2004).Google Scholar
Barclay, P. E., Srinivasan, K., and Painter, O., Opt. Express 13, 801 (2005).Google Scholar
Xu, Q. and Lipson, M., Opt. Express 15, 924 (2007)Google Scholar
Johnson, T. J., Borselli, M., and Painter, O., Opt. Express 14, 817 (2006).Google Scholar
Priem, G., Dumon, P., Bogaerts, W., Van Thourhout, D., Morthier, G., and Baets, R., Opt. Express 13, 9623 (2005)Google Scholar
Van Vaerenbergh, T., Fiers, M., Mechet, P., Spuesens, T., Kumar, R., Morthier, G., Schrauwen, B., Dambre, J., and Bienstman, P., Opt. Express 20, 20292 (2012).Google Scholar
Van Vaerenbergh, T., Fiers, M., Mechet, P., Spuesens, T., Kumar, R., Mortier, G., Vandoorne, K., Schneider, B., Schrauwen, B., Dambre, J., and Bienstman, P., in Asia Communications and Photonics Conference, J. Opt. Soc. Am. (2012)Google Scholar
Van Vaerenbergh, T., Fiers, M., Dambre, J., and Bienstman, P., Phys. Rev. A 86, 063808 (2012)Google Scholar
Mancinelli, M., Borghi, M., Ramiro-Manzano, F., Fedeli, J. M. and Pavesi, L., Opt. Express, 22, 14505 (2012)Google Scholar
Estevez, M.C., Alvarez, M., Lechuga, L.M., Laser & Photonics Reviews. 6, 463 (2012)Google Scholar
Ciminelli, C., Campanella, C.M., Dell’Olio, F., Campanella, C.E., Armenise, M.N., Prog. Quantum Electron. 37, 51 (2013)Google Scholar
Samusenko, A., Gandolfi, D., Pucker, G., Chalyan, T., Guider, R., Ghulinyan, M. and Pavesi, L.. J. Lightwave Technol. 34, 969 (2016);Google Scholar
Gandolfi, D. “On-chip photonic label-free biosensors”. PhD Thesis, University of Trento, Trento, Italy (2015)Google Scholar
Chalyan, T., Gandolfi, D., Guider, R., Pavesi, L., Pasaquardini, L., Pederzolli, C., Samusenko, A., Pucker, G., IEEE BioPhotonics (2015)Google Scholar