Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T17:46:27.804Z Has data issue: false hasContentIssue false

High-Strain Shape-Memory Properties of Poly(Carbonate-Urea-Urethane)s Based on Aliphatic Oligocarbonates and L-Lysine Diisocyanate

Published online by Cambridge University Press:  03 July 2017

Magdalena Mazurek-Budzyńska*
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany Warsaw University of Technology, Department of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
Muhammad Y. Razzaq
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
Gabriel Rokicki
Affiliation:
Warsaw University of Technology, Department of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
Marc Behl
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
Andreas Lendlein
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
*
Get access

Abstract

The simultaneous capability of high-strain deformation and high shape recovery ratio constitutes a great challenge in design of the shape-memory polymers. Here we report on poly(carbonate-urea-urethane)s (PCUUs) synthesized by a precursor route, based on oligo(alkylene carbonate) diols, L-lysine diisocyanate (LDI), and water vapor. When programed with a strain of ε prog = 800%, the PCUU networks exhibited a one-way shape-memory effect (1W-SME) with excellent shape fixity (> 97%) and shape recovery (> 99%) ratios. The switching temperatures (T sw) varied between 50 and 56 °C and correlated to the melting transitions of the switching domains. The obtained PCUUs capable of high-strain are interesting candidate materials for degradable biomaterials as required in smart medical devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chan, B.Q.Y., Liow, S.S. and Loh, X.J., RSC Adv 6, 34946 (2016).Google Scholar
Zhao, Q., Qi, H.J. and Xie, T., Prog Polym Sci 49-50, 79 (2015).Google Scholar
Ainara, S., Foster, E.J., Christoph, W., Arantxa, E. and Maria Angeles, C., Smart Mater Struct 23, 025033 (2014).Google Scholar
Lendlein, A. and Langer, R., Science 296, 1673 (2002).CrossRefGoogle Scholar
Sun, L., Huang, W.M., Lu, H., Lim, K.J., Zhou, Y., Wang, T.X. and Gao, X.Y., Macromol Chem Phys 215, 2430 (2014).CrossRefGoogle Scholar
Yan, W., Fang, L., Noechel, U., Kratz, K. and Lendlein, A., J Polym Sci Part B, Polym Phys 54, 1935 (2016).Google Scholar
Pilate, F., Toncheva, A., Dubois, P. and Raquez, J.-M., Eur Polym J 80, 268 (2016).Google Scholar
Julich-Gruner, K.K., Löwenberg, C., Neffe, A.T., Behl, M. and Lendlein, A., Macromol Chem Phys 214, 527 (2013).Google Scholar
Zhao, Q., Behl, M. and Lendlein, A., Soft Matter 9, 1744 (2013).Google Scholar
Voit, W., Ware, T., Dasari, R.R., Smith, P., Danz, L., Simon, D., Barlow, S., Marder, S.R. and Gall, K., Adv Funct Mater 20, 162 (2010).Google Scholar
Wang, Y., Li, X., Pan, Y., Zheng, Z., Ding, X. and Peng, Y., RSC Adv 4, 17156 (2014).CrossRefGoogle Scholar
Mazurek-Budzyńska, M., Razzaq, M.Y., Tomczyk, K., Rokicki, G., Behl, M. and Lendlein, A., Polym Adv Technol, 10.1002/pat.3948, (Published online on 24th October 2016).Google Scholar
Hao, H., Shao, J., Deng, Y., He, S., Luo, F., Wu, Y., Li, J., Tan, H., Li, J. and Fu, Q., Biomater Sci 4, 1682 (2016).CrossRefGoogle Scholar
Mathew, S., Baudis, S., Neffe, A.T., Behl, M., Wischke, C. and Lendlein, A., Eur J Pharm Biopharm 95, Part A, 18 (2015).Google Scholar
Mazurek, M.M. and Rokicki, G., Pol J Chem Technol 15, 80 (2013).CrossRefGoogle Scholar
Mazurek, M.M., Tomczyk, K., Auguścik, M., Ryszkowska, J. and Rokicki, G., Polym Adv Technol 26, 57 (2015).Google Scholar
Urbaczewski-Espuche, E., Galy, J., Gerard, J.-F., Pascault, J.-P. and Sautereau, H., Polym Eng Sci 31, 1572 (1991).CrossRefGoogle Scholar
Kratz, K., Madbouly, S.A., Wagermaier, W. and Lendlein, A., Adv Mater 23, 4058 (2011).Google Scholar
Kojio, K., Furukawa, M., Motokucho, S., Shimada, M. and Sakai, M., Macromolecules 42, 8322 (2009).Google Scholar
Feng, Y., Xue, Y., Guo, J., Cheng, L., Jiao, L., Zhang, Y. and Yue, J., J Appl Polym Sci 112, 473 (2009).Google Scholar
Masubuchi, T., Sakai, M., Kojio, K., Furukawa, M. and Aoyagi, T., e-J Soft Mater 3, 55 (2007).Google Scholar
Chen, K.S., Yu, T.L. and Tseng, Y.H., J Polym Sci Part A: Pol Chem 37, 2095 (1999).3.0.CO;2-7>CrossRefGoogle Scholar
Deng, C., Cui, Y., Zhao, T., Tan, M., Huang, H. and Guo, M., RSC Adv 4, 24095 (2014).Google Scholar