Article contents
Highly Conductive Wire: Cu Carbon Nanotube Composite Ampacity and Metallic CNT Buckypaper Conductivity
Published online by Cambridge University Press: 27 December 2016
Abstract
Carbon nanotube (CNT) composites are being explored to improve the conductivity and density of electrical wire used in aviation. Presented are the current carrying capacity of a CNT-Cu composite and Roman spectroscopy and electrical conductivity of Buckypaper (BP) made of normal and sorted 95% metallic CNT (m-CNT). The ampacity of the Cu-CNT composite was 3.8% lower than pure Cu. This is significant because it is not in agreement with high CNT ampacity claims. The average conductivity of the CNT in the sorted, 95% metallic BP was 2.5 times higher than the CNT in the un-sorted BP. This shows the importance of the intrinsic CNT conductivity as opposed to interfacial resistances and that the conductivity of the semiconductor CNT present in the un-sorted BP must be much lower than the conductivity of m-CNT. The high conductivity of the sorted BP provides proof that conductivity improvements in CNT composites can be made by the use of sorted, highly conductive m-CNT.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2016
References
REFERENCES
- 3
- Cited by