Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T09:46:54.277Z Has data issue: false hasContentIssue false

Fatigue Behaviour of Additive Manufactured Ti-TiB

Published online by Cambridge University Press:  23 November 2018

Douglas B. Boudreau
Affiliation:
Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, Windsor, ON, Canada
Liza-Anastasia DiCecco
Affiliation:
Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, Windsor, ON, Canada
Olufisayo A. Gali
Affiliation:
Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, Windsor, ON, Canada
Afsaneh Edrisy*
Affiliation:
Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, Windsor, ON, Canada
*
Get access

Abstract

Fatigue behaviour of titanium reinforced with TiB particles fabricated by ‘plasma transferred arc solid freeform fabrication’ (PTA-SFFF) technique was investigated. Rotation bending fatigue tests were conducted following the MPIF 56 standard using the staircase method approach. Experimental data is used to calculate the fatigue strength and construct S-N curves, where the results were compared to a powder metallurgy FC0205 as a benchmark material. The titanium samples were found to exhibit superior fatigue behaviour in comparison to the reference FC0205 material, performing well above 1/3 of its ultimate tensile strength with a 90% survival fatigue strength of 244 +/- 98.3 MPa versus 141 +/- 17.4 MPa. Fatigue failure mechanisms of samples were identified by examination of the fracture surfaces through scanning electron microscopy (SEM) as well as using transmission-electron microscopy (TEM) and focused ion beam (FIB) analysis techniques. Fatigue crack propagation was either arrested or deflected when propagation occurred within the vicinity of the TiB intermetallics. Fracture surfaces of the titanium matrix displayed evidence of striations while the TiB intermetallic experience cleavage fracture.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

Donachie, M.J.J., in Titan. - A Tech. Guid., 2nd ed. (ASM International, Materials Park, 2000), pp. 13.Google Scholar
Lütjering, G. and Williams, J.C., Titanium: Engineering Materials and Processes, 2nd ed. (Springer, New York, 2007).Google Scholar
Niknam, S.A., Khettabi, R., and Songmene, V., in Mach. Titan. Alloy., edited by Davim, J.P. (Springer-Verlag Berlin Heidelberg, New York, 2014), pp. 110.Google Scholar
Kumar, P. and Chandran, K.S.R., Metall. Mater. Trans. A 48, 2301 (2017).CrossRefGoogle Scholar
Jinks, S., Scanlan, J., and Wiseall, S., in Collab. Prod. Serv. Life Cycle Manag. a Sustain. World, edited by Curran, R., Chou, S.Y., and Trappey, A. (Springer-Verlag London Limited, London, 2008), pp. 225232.Google Scholar
Marini, D., Cunningham, D., and Corney, J.R., Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2017).Google Scholar
Bolzoni, L., Ruiz-Navas, E.M., and Gordo, E., Mater. Sci. Eng. A 687, 47 (2017).CrossRefGoogle Scholar
Cao, Y., Zeng, F., Liu, B., Liu, Y., Lu, J., Gan, Z., and Tang, H., Mater. Sci. Eng. A 654, 418 (2016).CrossRefGoogle Scholar
German, R.M., Powder Metallurgy and Particulate Materals Processing: The Processes, Materials, Products, Properties and Applications (Metal Powder Industries Federation, Princeton, New Jersey, 2005).Google Scholar
Standard Test Methods for Metal Powders and Powder Metallurgy Products (Metal Powder Industries Federation, Princeton, 2002).Google Scholar
Grayson, G.N., Schaffer, G.B., and Griffiths, J.R., Mater. Sci. Eng. A 434, 1 (2006).CrossRefGoogle Scholar
Biamino, S., Penna, A., Ackelid, U., Sabbadini, S., Tassa, O., Fino, P., Pavese, M., Gennaro, P., and Badini, C., Intermetallics 19, 776 (2011).CrossRefGoogle Scholar
Edwards, P., O’Conner, A., and Ramulu, M., J. Manuf. Sci. Eng. 135, (2013).CrossRefGoogle Scholar
Edwards, P. and Ramulu, M., Mater. Sci. Eng. A 598, 327 (2014).CrossRefGoogle Scholar
Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H.A., and Maier, H.J., Int. J. Fatigue 48, 300 (2013).CrossRefGoogle Scholar
Greitemeier, D., Palm, F., Syassen, F., and Melz, T., Int. J. Fatigue 94, 211 (2017).CrossRefGoogle Scholar
Cai, C., Song, B., Qiu, C., Li, L., Xue, P., Wei, Q., Zhou, J., Nan, H., Chen, H., and Shi, Y., J. Alloys Compd. 710, 364 (2017).CrossRefGoogle Scholar
Popoola, A.P.I., Phume, L., Pityana, S., and Aigbodion, V.S., Surf. Coatings Technol. 285, 161 (2016).CrossRefGoogle Scholar
Li, S., Kondoh, K., Imai, H., Chen, B., Jia, L., and Umeda, J., Mater. Sci. Eng. A 628, 75 (2015).CrossRefGoogle Scholar
Ravi Chandran, K.S., Panda, K.B., and Sahay, S.S., Jom 56, 42 (2004).CrossRefGoogle Scholar
Kooi, B.J., Pei, Y.T., and De Hosson, J.T.M., Acta Mater. 51, 831 (2003).CrossRefGoogle Scholar
Weng, F., Yu, H., Chen, C., Liu, J., Zhao, L., Dai, J., and Zhao, Z., J. Alloys Compd. 692, 989 (2017).CrossRefGoogle Scholar
Pouzet, S., Peyre, P., Gorny, C., Castelnau, O., Baudin, T., Brisset, F., Colin, C., and Gadaud, P., Mater. Sci. Eng. A 677, 171 (2016).CrossRefGoogle Scholar
Banerjee, R., Collins, P.C., and Fraser, H.L., Adv. Eng. Mater. 4, 847 (2002).3.0.CO;2-C>CrossRefGoogle Scholar
Nag, S. and Banerjee, R., in ASM Handb. (ASM International, Materials Park, 2012), pp. 617.Google Scholar
ASTM B962-15 Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle (ASTM International, West Conshohocken, 2015).Google Scholar
Standard Test Method 56: Method for Determination of Rotating Beam Fatigue Endurance Limit of Powder Metallurgy (PM) Materials (Metal Powder Industries Federation, Princeton, 2016).Google Scholar
ASTM E8/E8M-16a Standard Test Methods for Tension Testing of Metallic Materials (ASTM International, West Conshohocken, 2016).Google Scholar
ASM Handbook Volume 3, Alloy Phase Diagrams - B (Boron) Binary Alloy Phase Diagrams (ASM International, Materials Park, 2016).Google Scholar
ASM Handbook Volume 2, Properties and Selection: Nonferrous Alloys and Special Purpose Materials (ASM International, Materials Park, 1995).Google Scholar
Decker, B.F. and Kasper, J.S., Acta Crystallogr. 7, 77 (1954).CrossRefGoogle Scholar
Rutz, H., Murphy, T., and Cimino, T., in PM-EC ’96 World Congr. (PM International, Washington, 1996), pp. 120.Google Scholar
Farokhzadeh, K. and Edrisy, A., Mater. Sci. Eng. A 620, 435 (2014).CrossRefGoogle Scholar
Lewandowska, M. and Kurzydlowski, K.J., J. Mater. Sci. 43, 7299 (2008).CrossRefGoogle Scholar
Estrin, Y. and Vinogradov, A., Acta Mater. 61, 782 (2013).CrossRefGoogle Scholar
Azushima, A., Kopp, R., Korhonen, A., Yang, D.Y., Micari, F., Lahoti, F.G.D., Groche, P., Yanagimoto, J., Tsujii, N., Rosochowskij, A., and Yanagidaa, A., CIRP Ann. 57, 716 (2008).CrossRefGoogle Scholar