Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T15:04:29.089Z Has data issue: false hasContentIssue false

Far Field Optical Properties of a Monolayer of SiO2 Spheres and Small Au Nanoparticles

Published online by Cambridge University Press:  19 February 2019

A. Santos Gómez
Affiliation:
Instituto de Física, Benemérita Universidad Autónoma de Puebla. Apdo. Post. J-48, Puebla, Pue., 72570, México.
A. L. González*
Affiliation:
Instituto de Física, Benemérita Universidad Autónoma de Puebla. Apdo. Post. J-48, Puebla, Pue., 72570, México.
*
Get access

Abstract

Here, we present a numerical study of the far field optical response of a monolayer composed by an hexagonal closed packed array of SiO2 spheres with a single Au NP at each interstitial position. The Optical Efficiencies, Reflection, Transmission and Absorption at normal incidence, were calculated using Discrete Dipole Approximation model extended to periodic targets. In order to consider different amounts of loads of Au NPs per unit of area in the monolayer, we have fixed the diameter of Au NPs (9 nm) and varied the diameter of the SiO2 spheres. The numerical calculations indicate that Au-SiO2 composite monolayers can absorb and scatter the incident electromagnetic wave, as the load of Au NPs increases the monolayer becomes less transparent to light and the spectra are red-shifted. The profile of the absorption spectrum of the Au-SiO2 composite monolayer is very similar to that of a Au NPs monolayer (composite monolayer without the Silica spheres) but less intense, presumably because the Silica spheres screen the coupling of the Localized Surface Plasmons of Au NPs.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wakayama, H., Setoyama, N., Fukushima, Y., Adv. Mater., 15 (9), 742-745 (2003).CrossRefGoogle Scholar
Morandi, V., Marabelli, F., Amendola, V., Meneghetti, M., Comoretto, D., Adv. Funct. Mater. , 17 (15), 2779-2786 (2007).CrossRefGoogle Scholar
Bachan, N., Asha, A., Jeyarani, W.J., Kumar, D.A., Shyla, J.M., Acta Metall. Sin. , 28 (11), 1317-1325 (2015).CrossRefGoogle Scholar
Kubo, S., Gu, Z.Z., Tryk, D.A., Ohko, Y., Sato, O., Fujishima, A., Langmuir , 18 (13), 5043-5046 (2002).CrossRefGoogle Scholar
Romero-Cruz, L. A., Santos-Gómez, A., Palomino Ovando, M. A., Hernández Cristobal, Orlando, Sánchez Mora, E., González, A. L., Toledo Solano, M., Superlattices and Microstructures, 123, 71-80 (2018).CrossRefGoogle Scholar
González, A. L., and Noguez, C., J. Comput. Theor. Nanosci., 4 (2), 231-238 (2007).CrossRefGoogle Scholar
Noguez, C., Villagómez, C. J., and González, A. L., Phys. Status Solidi B, 252 (1), 5671 (2015).CrossRefGoogle Scholar
Draine, B. T. and Flatau, P., J. Opt. Soc. Am. A, 11,14911499 (1994).CrossRefGoogle Scholar
Draine, B. T. and Flatau, P. J., J. Opt. Soc. Am. A, 25 (11), 2693-2703 (2008).CrossRefGoogle Scholar
Johnson, P. B. and Christy, R. W., Phys. Rev. B, 6, 4370 (1972).CrossRefGoogle Scholar